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We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of
a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the
twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second
observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years.
The inferred component black hole masses are 31.2þ8.4

−6.0M⊙ and 19.4þ5.3
−5.9M⊙ (at the 90% credible level).

The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a
mass-weighted combination of the spin components perpendicular to the orbital plane, χeff ¼ −0.12þ0.21

−0.30 .
This result implies that spin configurations with both component spins positively aligned with the orbital
angular momentum are disfavored. The source luminosity distance is 880þ450

−390 Mpc corresponding to a

redshift of z ¼ 0.18þ0.08
−0.07 . We constrain the magnitude of modifications to the gravitational-wave dispersion

relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like
massive particles, we bound the graviton mass to mg ≤ 7.7 × 10−23 eV=c2. In all cases, we find that
GW170104 is consistent with general relativity.

DOI: 10.1103/PhysRevLett.118.221101

I. INTRODUCTION

The first observing run of the Advanced Laser
Interferometer Gravitational-Wave Observatory (LIGO)
[1] identified two binary black hole coalescence signals
with high statistical significance, GW150914 [2] and
GW151226 [3], as well as a less significant candidate
LVT151012 [4,5]. These discoveries ushered in a new era
of observational astronomy, allowing us to investigate the
astrophysics of binary black holes and test general relativity
(GR) in ways that were previously inaccessible [6,7]. We
now know that there is a population of binary black holes
with component masses≳25M⊙ [5,6], and that merger rates
are high enough for us to expect more detections [5,8].
Advanced LIGO’s second observing run began on

November 30, 2016. On January 4, 2017, a gravitational-
wave signal was detected with high statistical significance.
Figure 1 shows a time-frequency representation of the data
from the LIGO Hanford and Livingston detectors, with the
signalGW170104visible as the characteristic chirp of a binary
coalescence. Detailed analyses demonstrate that GW170104
arrived at Hanford ∼3 ms before Livingston, and originated
from the coalescence of two stellar-mass black holes at a
luminosity distance of ∼3 × 109 light-years.

GW170104’s source is a heavy binary black hole system,
with a total mass of ∼50M⊙, suggesting formation in a
subsolar metallicity environment [6]. Measurements of the
black hole spins show a preference away from being
(positively) aligned with the orbital angular momentum,
but do not exclude zero spins. This is distinct from the case
for GW151226, which had a strong preference for spins
with positive projections along the orbital angular momen-
tum [3]. The inferred merger rate agrees with previous
calculations [5,8], and could potentially be explained by
binary black holes forming through isolated binary evolu-
tion or dynamical interactions in dense stellar clusters [6].
Gravitational-wave observations of binary black holes

are the ideal means to test GR and its alternatives. They
provide insight into regimes of strong-field gravity where
velocities are relativistic and the spacetime is dynamic. The
tests performed with the sources detected in the first
observing run showed no evidence of departure from
GR’s predictions [5,7]; GW170104 provides an opportu-
nity to tighten these constraints. In addition to repeating
tests performed in the first observing run, we also test for
modifications to the gravitational-wave dispersion relation.
Combining measurements from GW170104 with our
previous results, we obtain new gravitational-wave con-
straints on potential deviations from GR.

II. DETECTORS AND DATA QUALITY

The LIGO detectors measure gravitational-wave strain
using two dual-recycled Fabry-Perot Michelson interfer-
ometers at the Hanford and Livingston observatories [1,10].
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After the first observing run, both LIGO detectors under-
went commissioning to reduce instrumental noise, and to
improve duty factor and data quality (see Sec. I in the
Supplemental Material [11]). For the Hanford detector, a
high-power laser stage was introduced, and as the first step
the laser power was increased from 22 to 30 W to reduce
shot noise [10] at high frequencies. For the Livingston
detector, the laser power was unchanged, but there was a
significant improvement in low-frequency performance
mainly due to the mitigation of scattered light noise.
Calibration of the interferometers is performed by

inducing test-mass motion using photon pressure from
modulated calibration lasers [12,13]. The one-sigma

calibration uncertainties for strain data in both detectors
for the times used in this analysis are better than 5% in
amplitude and 3° in phase over the frequency range 20–
1024 Hz.
At the time of GW170104, both LIGO detectors were

operating with sensitivity typical of the observing run to
date and were in an observation-ready state. Investigations
similar to the detection validation procedures for previous
events [2,14] found no evidence that instrumental or
environmental disturbances contributed to GW170104.

III. SEARCHES

GW170104 was first identified by inspection of low-
latency triggers from Livingston data [15–17]. An auto-
mated notification was not generated as the Hanford
detector’s calibration state was temporarily set incorrectly
in the low-latency system. After it was manually deter-
mined that the calibration of both detectors was in a
nominal state, an alert with an initial source localization
[18,19] was distributed to collaborating astronomers [20]
for the purpose of searching for a transient counterpart.
About 30 groups of observers covered the parts of the sky
localization using ground- and space-based instruments,
spanning from γ ray to radio frequencies as well as high-
energy neutrinos [21].
Offline analyses are used to determine the significance of

candidate events. They benefit from improved calibration
and refined data quality information that is unavailable to
low-latency analyses [5,14]. The second observing run is
divided into periods of two-detector cumulative coincident
observing time with ≳5 days of data to measure the false
alarm rate of the search at the level where detections can be
confidently claimed. Two independently designed matched
filter analyses [16,22] used 5.5 days of coincident data
collected from January 4, 2017 to January 22, 2017.
These analyses search for binary coalescences over a range

of possible masses and by using discrete banks [23–28] of
waveform templates modeling binaries with component
spins aligned or antialigned with the orbital angular momen-
tum [29]. The searches can target binary black hole mergers
with detector-frame totalmasses2M⊙≤Mdet≲100–500M⊙,
and spin magnitudes up to∼0.99. The upper mass boundary
of the bank is determined by imposing a lower limit on the
duration of the template in the detectors’ sensitive frequency
band [30]. Candidate events must be found in both detectors
by the same templatewithin 15ms [4]. This 15-mswindow is
determined by the 10-ms intersite propagation time plus an
allowance for the uncertainty in identified signal arrival times
of weak signals. Candidate events are assigned a detection
statistic value ranking their relative likelihood of being a
gravitational-wave signal: the search uses an improved
detection statistic compared to the first observing run [31].
The significance of a candidate event is calculated by
comparing its detection statistic value to an estimate of
the background noise [4,16,17,22]. GW170104was detected

FIG. 1. Time–frequency representation [9] of strain data from
Hanford and Livingston detectors (top two panels) at the time of
GW170104. The data begin at 1167559936.5 GPS time. The
third panel from the top shows the time-series data from each
detector with a 30–350 Hz bandpass filter, and band-reject filters
to suppress strong instrumental spectral lines. The Livingston
data have been shifted back by 3 ms to account for the source’s
sky location, and the sign of its amplitude has been inverted to
account for the detectors’ different orientations. The maximum-
likelihood binary black hole waveform given by the full-pre-
cession model (see Sec. IV) is shown in black. The bottom panel
shows the residuals between each data stream and the maximum-
likelihood waveform.
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with a network matched-filter signal-to-noise ratio (SNR) of
13. At the detection statistic value assigned to GW170104,
the false alarm rate is less than 1 in 70 000 years of coincident
observing time.
The probability of astrophysical origin Pastro for a candi-

date event is found by comparing the candidate’s detection
statistic to a model described by the distributions and rates of
both background and signal events [8,32,33]. The back-
ground distribution is analysis dependent, being derived from
the background samples used to calculate the false alarm rate.
The signal distribution can depend on themass distribution of
the source systems; however, we find that different models
of the binary black hole mass distribution (as described in
Sec. VI) lead to negligible differences in the resulting value of
Pastro. At the detection statistic value of GW170104, the
background rate in bothmatched filter analyses is dwarfed by
the signal rate, yielding Pastro > 1 − ð3 × 10−5Þ.
An independent analysis that is not based on matched

filtering, but instead looks for generic gravitational-wave
bursts [2,34] and selects events where the signal frequency
rises over time [35], also identified GW170104. This
approach allows for signal deviations from the waveform
models used for matched filtering at the cost of a lower
significance for signals that are represented by the consid-
ered templates. This analysis reports a false alarm rate of
∼1 in 20 000 years for GW170104.

IV. SOURCE PROPERTIES

The source parameters are inferred from a coherent
Bayesian analysis of the data from both detectors [36,37].
As a cross-check, we use two independent model-waveform
families. Both are tuned to numerical-relativity simulations
of binary black holes with nonprecessing spins, and intro-
duce precession effects through approximate prescriptions.
One model includes inspiral spin precession using a single
effective spin parameter χp [38–40]; the other includes the
generic two-spin inspiral precession dynamics [41–43]. We
refer to these as the effective-precession and full-precession
models, respectively [44]. The two models yield consistent
results. Table I shows selected source parameters for
GW170104; unless otherwise noted, we quote the median
and symmetric 90% credible interval for inferred quantities.
The final mass (or equivalently the energy radiated), final
spin, and peak luminosity are computed using averages of fits
to numerical-relativity results [45–49]. The parameter uncer-
tainties include statistical and systematic errors from aver-
aging posterior probability distributions over the two
waveform models, as well as calibration uncertainty [37]
(and systematic uncertainty in the fit for peak luminosity).
Statistical uncertainty dominates the overall uncertainty as a
consequence of the moderate SNR.
For binary coalescences, the gravitational-wave frequency

evolution is primarily determined by the component masses.
For highermass binaries, merger and ringdown dominate the

signal, allowing good measurements of the total mass M ¼
m1 þm2 [53–57]. For lower mass binaries, like GW151226
[3], the inspiral is more important, providing precision
measurements of the chirp mass M ¼ ðm1m2Þ3=5=M1=5

[58–61]. The transition between the regimes depends upon
the detectors’ sensitivity, and GW170104 sits between the

TABLE I. Source properties for GW170104: median values
with 90% credible intervals. We quote source-frame masses; to
convert to the detector frame, multiply by (1þ z) [50,51]. The
redshift assumes a flat cosmology with Hubble parameter H0 ¼
67.9 km s−1 Mpc−1 and matter density parameter Ωm ¼ 0.3065
[52]. More source properties are given in Table I of the
Supplemental Material [11].

Primary black hole mass m1 31.2þ8.4
−6.0M⊙

Secondary black hole mass m2 19.4þ5.3
−5.9M⊙

Chirp mass M 21.1þ2.4
−2.7M⊙

Total mass M 50.7þ5.9
−5.0M⊙

Final black hole mass Mf 48.7þ5.7
−4.6M⊙

Radiated energy Erad 2.0þ0.6
−0.7M⊙c2

Peak luminosity lpeak 3.1þ0.7
−1.3 × 1056erg s−1

Effective inspiral spin parameter χeff −0.12þ0.21
−0.30

Final black hole spin af 0.64þ0.09
−0.20

Luminosity distance DL 880þ450
−390 Mpc

Source redshift z 0.18þ0.08
−0.07

FIG. 2. Posterior probability density for the source-framemasses
m1 and m2 (with m1 ≥ m2). The one-dimensional distributions
include the posteriors for the two waveform models, and their
average (black). The dashed lines mark the 90% credible interval
for the average posterior. The two-dimensional plot shows the
contours of the 50% and 90% credible regions plotted over a color-
coded posterior density function. For comparison, we also show
the two-dimensional contours for the previous events [5].
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two. The inferred component masses are shown in Fig. 2.
The formof the two-dimensional distribution is guidedby the
combination of constraints on M and M. The binary was
composed of two black holeswithmassesm1 ¼ 31.2þ8.4

−6.0M⊙
and m2 ¼ 19.4þ5.3

−5.9M⊙; these merged into a final black hole
of mass 48.7þ5.7

−4.6M⊙. This binary ranks second, behind
GW150914’s source [5,37], as themost massive stellar-mass
binary black hole system observed to date.
The black hole spins play a subdominant role in the

orbital evolution of the binary, and are more difficult to
determine. The orientations of the spins evolve due to
precession [62,63], and we report results at a point in the
inspiral corresponding to a gravitational-wave frequency of
20 Hz [37]. The effective inspiral spin parameter χeff ¼
ðm1a1 cos θLS1 þm2a2 cos θLS2Þ=M is the most important
spin combination for setting the properties of the inspiral
[64–66] and remains important through to merger [67–71];
it is approximately constant throughout the orbital evolu-
tion [72,73]. Here θLSi ¼ cos−1ðL̂ · ŜiÞ is the tilt angle
between the spin Si and the orbital angular momentum L,
which ranges from 0° (spin aligned with orbital angular
momentum) to 180° (spin antialigned); ai ¼ jcSi=Gm2

i j is
the (dimensionless) spin magnitude, which ranges from 0 to
1, and i ¼ 1 for the primary black hole and i ¼ 2 for the
secondary. We use the Newtonian angular momentum for
L, such that it is normal to the orbital plane; the total orbital
angular momentum differs from this because of post-
Newtonian corrections. We infer that χeff ¼ −0.12þ0.21

−0.30 .
Similarly to GW150914 [5,37,44], χeff is close to zero with
a preference towards being negative: the probability that
χeff < 0 is 0.82. Our measurements therefore disfavor a
large total spin positively aligned with the orbital angular
momentum, but do not exclude zero spins.
The in-plane components of the spin control the amount

of precession of the orbit [62]. This may be quantified by
the effective precession spin parameter χp which ranges
from 0 (no precession) to 1 (maximal precession) [39].
Figure 3 (left) shows the posterior probability density for
χeff and χp [39]. We gain some information on χeff ,
excluding large positive values, but, as for previous events
[3,5,37], the χp posterior is dominated by the prior (see
Sec. III of the Supplemental Material [11]). No meaningful
constraints can be placed on the magnitudes of the in-plane
spin components and hence precession.
The inferred component spin magnitudes and orienta-

tions are shown in Fig. 3 (right). The lack of constraints on
the in-plane spin components means that we learn almost
nothing about the spin magnitudes. The secondary’s spin is
less well constrained as the less massive component has a
smaller impact on the signal. The probability that the tilt
θLSi is less than 45° is 0.04 for the primary black hole and
0.08 for the secondary, whereas the prior probability is 0.15
for each. Considering the two spins together, the proba-
bility that both tilt angles are less than 90° is 0.05.

FIG. 3. Top: Posterior probability density for the effective
inspiral and precession spin parameters, χeff and χp. The
one-dimensional distributions show the posteriors for the two
waveform models, their average (black), and the prior distribu-
tions (green). The dashed lines mark the 90% credible interval for
the average posterior. The two-dimensional plot shows the 50%
and 90% credible regions plotted over the posterior density
function. Bottom: Posterior probabilities for the dimensionless
component spins, cS1=ðGm2

1Þ and cS2=ðGm2
2Þ, relative to the

normal of the orbital plane L̂. The tilt angles are 0° for spins
aligned with the orbital angular momentum and 180° for spins
antialigned. The probabilities are marginalized over the azimuthal
angles. The pixels have equal prior probability (1.6 × 10−3);
they are spaced linearly in spin magnitudes and the cosine
of the tilt angles. Results are given at a gravitational-wave
frequency of 20 Hz.
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Effectively all of the information comes from constraints on
χeff combined with the mass ratio (and our prior of
isotropically distributed orientations and uniformly distrib-
uted magnitudes) [5].
The source’s luminosity distance DL is inferred from the

signal amplitude [37,74]. The amplitude is inversely propor-
tional to the distance, but also depends upon the binary’s
inclination [59,75–77]. This degeneracy is a significant
source of uncertainty [57,71]. The inclination has a bimodal
distribution with broad peaks for face-on and face-off
orientations (see Fig. 4 of the Supplemental Material
[11]). GW170104’s source is at DL ¼ 880þ450

−390 Mpc, corre-
sponding to a cosmological redshift of z ¼ 0.18þ0.08

−0.07 [52].
While GW170104’s source has masses and spins
comparable to GW150914’s, it is most probably at a
greater distance [5,37].
For GW150914, extensive studies weremade to verify the

accuracy of the model waveforms for parameter estimation
through comparisons with numerical-relativity waveforms
[78,79]. GW170104 is a similar system to GW150914 and,
therefore, it is unlikely that there are any significant biases in
our results as a consequence of waveform modeling. The
lower SNR of GW170104 makes additional effects not
incorporated in the waveform models, such as higher modes
[55,80,81], less important. However, if the source is edge on
or strongly precessing, there could be significant biases in
quantities including M and χeff [78]. Comparison to
numerical-relativity simulations of binary black holes with
nonprecessing spins [79], including those designed to
replicate GW170104, produced results (and residuals) con-
sistent with the model-waveform analysis.

V. WAVEFORM RECONSTRUCTIONS

Consistency of GW170104 with binary black hole wave-
formmodels can also be explored through comparisons with
a morphology-independent signal model [82]. We choose to
describe the signal as a superposition of an arbitrary number
of Morlet-Gabor wavelets, which models an elliptically
polarized, coherent signal in the detector network.
Figure 4 plots whitened detector data at the time of
GW170104, together with waveforms drawn from the
90% credible region of the posterior distributions of the
morphology-independent model and the binary black hole
waveform models used to infer the source properties. The
signal appears in the two detectors with slightly different
amplitudes, and a relative phase shift of approximately 180°,
because of their different spatial orientations [2]. The wave-
let- and template-based reconstructions differ at early times
because the wavelet basis requires high-amplitude, well-
localized signal energy to justify the presence of additional
wavelets, while the earlier portion of the signal is inherently
included in the binary black hole waveform model.
The waveforms reconstructed from the morphology-

independent model are consistent with the characteristic
inspiral-merger-ringdown structure. The overlap [58]

between the maximum-likelihood waveform of the binary
black hole model and the median waveform of the morphol-
ogy-independent analysis is 87%, consistent with expect-
ations fromMonteCarlo analysis of binaryblackhole signals
injected into detector data [34].We also use themorphology-
independent analysis to search for residual gravitational-
wave energy after subtracting the maximum-likelihood
binary black hole signal from the measured strain data.
There is an 83% posterior probability in favor of Gaussian
noise versus residual coherent gravitational-wave energy
which is not described by thewaveformmodel, implying that
GW170104’s source is a black hole binary.

VI. BINARY BLACK HOLE POPULATIONS
AND MERGER RATES

The addition of the first 11 days of coincident observing
time in the second observing run, and the detection of
GW170104, leads to an improved estimate of the rate
density of binary black hole mergers. We adopt two simple
representative astrophysical population models: a distribu-
tion that is a power law in m1 and uniform in m2,
pðm1; m2Þ ∝ m−α

1 =ðm1 − 5M⊙Þ with α ¼ 2.35 [83], and
a distribution uniform in the logarithm of each of the
component masses [5,8]. In both cases, we impose
m1; m2 ≥ 5M⊙ and M ≤ 100M⊙ [8]. Using the results
from the first observing run as a prior, we obtain updated
rates estimates of R ¼ 103þ110−63 Gpc−3 yr−1 for the power

FIG. 4. Time-domain detector data (gray), and 90% confidence
intervals for waveforms reconstructed from the morphology-
independent wavelet analysis (orange) and binary black hole
(BBH) models from both waveform families (blue), whitened by
each instrument’s noise amplitude spectral density. The left
ordinate axes are normalized such that the amplitude of the
whitened data and the physical strain are equal at 200 Hz. The
right ordinate axes are in units of noise standard deviations. The
width of the BBH region is dominated by the uncertainty in the
astrophysical parameters.
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law, and R ¼ 32þ33
−20 Gpc−3 yr−1 for the uniform-in-log

distribution [5]. These combine search results from the
two offline matched filter analyses, and marginalize over
the calibration uncertainty [32]. The range for the merger
rate that brackets the two distributions, 12–213 Gpc−3 yr−1,
is consistent with the range 9–240 Gpc−3 yr−1 estimated
from the first observing run [5,8]. Recalculating the rates
directly after observing a new event can bias rate estimates,
but this bias decreases with increasing event count and is
negligible compared to other uncertainties on the intervals.
While the median estimates have not changed appreciably,
the overall tightening in the credible intervals is consistent
with the additional observation time and the increment in
the number of events with significant probability of being
astrophysical from 3 to 4.
Following the first observing run, we performed a

hierarchical analysis using the inferred masses of
GW150914, LVT151012, and GW151226 to constrain
the binary black hole mass distribution. We assumed the
power-law population distribution described above, treat-
ing α as a parameter to be estimated, and found α ¼ 2.5þ1.5

−1.6
[5]. With the addition of GW170104, α is estimated to be
2.3þ1.3

−1.4 (see Sec. IVof the Supplemental Material [11]); the
median is close to the power-law exponent used to infer the
(higher) merger rates.

VII. ASTROPHYSICAL IMPLICATIONS

GW170104’s source is a heavy stellar-mass binary black
hole system. Such binaries are consistent with formation
through several different evolutionary pathways [6].
Assuming black holes of stellar origin, there are two broad
families of formation channels: dynamical and isolated
binary evolution. Dynamical assembly of binaries is
expected in dense stellar clusters [84–91]. Dynamical
influences are also important for binary coalescences near
galactic nuclei [92–94], and through interactions as part of
a triple [95,96]. Isolated binary evolution in galactic fields
classically proceeds via a common envelope [97–105].
Variants avoiding common-envelope evolution include
(quasi-)chemically homogeneous evolution of massive
tidally locked binaries [101,106,107], or through stable
mass transfer in Population I [108,109] or Population III
binaries [110,111].
Stars lose mass throughout their lives; to leave a heavy

black hole as a remnant they must avoid significant mass
loss. Low-metallicity progenitors are believed to have
weaker stellar winds and hence diminished mass loss
[112]. Given the mass of the primary black hole, the
progenitors of GW170104 likely formed in a lower
metallicity environment Z ≲ 0.5Z⊙ [6,100,113–115], but
low mass loss may also have been possible at higher
metallicity if the stars were strongly magnetized [116].
An alternative to the stellar-evolution channels would be

binaries of primordial black holes [117–120]. GW170104’s

component masses lie in a range for which primordial black
holes could contribute significantly to the dark matter
content of the Universe, but merger rates in such scenarios
are uncertain [118,121]. The potential for existing electro-
magnetic observations to exclude primordial black holes of
these masses is an active area of research [119,122–128].
Some of the formationmodels listed above predict merger

rates on the order of ∼1–10 Gpc−3 yr−1 [85,87,92–
96,107,110,115]. Given that the rate intervals have now
tightened and the lower bound (from the uniform-in-log
distribution) is ∼12 Gpc−3 yr−1, these channels may be
insufficient to explain the full rate, but they could contribute
to the total rate if there are multiple channels in operation.
Future observations will improve the precision of the rate
estimation, its redshift dependence, andour knowledge of the
mass distribution, making it easier to constrain binary
formation channels.
Gravitational-wave observations provide information

about the component spins through measurements of χeff ,
and these measurements can potentially be used to distin-
guish different formation channels. Dynamically assembled
binaries (of both stellar and primordial black holes) should
have an isotropic distribution of spin tilts, with equal
probability for positive and negative χeff , and a concentration
around zero [129]. Isolated binary evolution typically pre-
dicts moderate (≲45°) spin misalignments [130], since the
effect of many astrophysical processes, such as mass transfer
[131,132] and tides [133,134], is to align spins with the
orbital angular momentum. Black hole spins could become
misaligned due to supernova explosions or torques during
collapse. Large natal kicks are needed to produce negative
χeff by changing the orbital plane [129,130,135]. The
magnitude of these kicks is currently uncertain [136–141]
and also influences the merger rate, with high kicks pro-
ducing lower merger rates in some population-synthesis
models [98,100,115,142]. For binary neutron stars there is
evidence that large tilts may be possible with small kicks
[143–146], and it is not yet understood if similar torques
could occur for black holes [138,147–149]. The absolute
value of χeff depends on the spinmagnitudes. Small values of
jχeffj can arise because the spin magnitudes are low, or
because they are misalignedwith the orbital angular momen-
tumor eachother. The spinmagnitudes for binaryblack holes
are currently uncertain, but GW151226 demonstrated that
they can be ≳0.2 [3], and high-mass x-ray binary measure-
ments indicate that the distribution of black hole spins could
extend to larger magnitudes [147]. For GW170104, we infer
χeff ¼ −0.12þ0.21

−0.30 . This includes the possibility of negative
χeff , whichwould indicate spin-orbit misalignment of at least
one component. It also excludes large positive values, and
thus could argue against its source forming through chemi-
cally homogeneous evolution, since large aligned spins
(ai ≳ 0.4) would be expected assuming the complete col-
lapse of the progenitor stars [106]. The inferred range is
consistent with dynamical assembly and isolated binary
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evolution provided that the positive orbit-aligned spin is
small (whether due to low spins or misalignment) [129,150–
152]. Current gravitational-wave measurements cluster
around χeff ∼ 0 (jχeff j < 0.35 at the 90% credible level for
all events; see Fig. 5 of the Supplemental Material [11]) [5].
Assuming that binary black hole spins are not typically small
(≲0.2), our observations hint towards the astrophysical
population favoring a distribution of misaligned spins rather
than near orbit-aligned spins [153]; further detections will
test if this is the case, and enable us to distinguish different
spin magnitude and orientation distributions [154–159].

VIII. TESTS OF GENERAL RELATIVITY

To check the consistency of the observed signals with the
predictions of GR for binary black holes in quasicircular
orbit, we employ a phenomenological approach that probes
how gravitational-wave generation or propagation could be
modified in an alternative theory of gravity. Testing for these
characteristicmodifications in thewaveform can quantify the
degree to which departures from GR can be tolerated given
the data. First, we consider the possibility of a modified
gravitational-wave dispersion relation, and place bounds on
the magnitude of potential deviations from GR. Second, we
perform null tests to quantify generic deviations from GR:
without assuming a specific alternative theory of gravity, we
verify if the detected signal is compatible with GR. For these
tests we use the three confident detections (GW150914,
GW151226, and GW170104); we do not use the marginal
event LVT151012, as its low SNR means that it contributes
insignificantly to all the tests [5].

A. Modified dispersion

InGR, gravitationalwaves are nondispersive.We consider
a modified dispersion relation of the form E2 ¼
p2c2 þ Apαcα, α ≥ 0, that leads to dephasing of the waves
relative to the phase evolution in GR. Here E and p are the
energy andmomentumof gravitational radiation, andA is the
amplitude of the dispersion [160,161]. Modifications to the
dispersion relation can arise in theories that include viola-
tions of local Lorentz invariance [162]. Lorentz invariance is
a cornerstone of modern physics but its violation is expected
in certain quantum gravity frameworks [162,163]. Several
modified theories of gravity predict specific values of α,
including massive-graviton theories (α ¼ 0, A > 0) [163],
multifractal spacetime [164] (α ¼ 2.5), doubly special rel-
ativity [165] (α ¼ 3), and Hořava-Lifshitz [166] and extra-
dimensional [167] theories (α ¼ 4). For our analysis, we
assume that the only effect of these alternative theories is to
modify the dispersion relation.
To leading order in AEα−2, the group velocity of gravi-

tational waves is modified as vg=c ¼ 1þ ðα − 1ÞAEα−2=2
[161]; both superluminal and subluminal propagation veloc-
ities are possible, depending on the sign ofA and the value of
α. A change in the dispersion relation leads to an extra term

δΨðA; αÞ in the evolution of the gravitational-wave phase
[160]. We introduce such a term in the effective-precession
waveform model [38] to constrain dispersion for various
values of α. To this end, we assume flat priors on A. In Fig. 5
we show 90% credible upper bounds on jAj derived from the
three confident detections. We do not show results for α ¼ 2
since in this case the modification of the gravitational-wave
phase is degenerate with the arrival time of the signal.
There exist constraints on Lorentz invariance violating

dispersion relations from other observational sectors (e.g.,
photon or neutrino observations) for certain values of α, and
our results are weaker by several orders of magnitude.
However, there are frameworks in which Lorentz invari-
ance is only broken in one sector [168,169], implying that
each sector provides complementary information on poten-
tial modifications to GR. Our results are the first bounds
derived from gravitational-wave observations, and the first
tests of superluminal propagation in the gravitational sector.
The result for A > 0 and α ¼ 0 can be reparametrized to

derive a lower bound on the graviton Compton wavelength
λg, assuming that gravitons disperse in vacuum in the same
way as massive particles [5,7,170]. In this case, no violation
of Lorentz invariance is assumed. Using a flat prior for the
gravitonmass, we obtain λg>1.5×1013km, which improves
on the bound of 1.0 × 1013 km from previous gravitational-
wave observations [5,7]. The combined bound using the
three confident detections is λg > 1.6 × 1013 km, or for the
graviton mass mg ≤ 7.7 × 10−23 eV=c2.

B. Null tests

In the post-Newtonian approximation, the gravitational-
wave phase in the Fourier domain is a series expansion in

FIG. 5. 90% credible upper bounds on jAj, the magnitude
of dispersion, obtained combining the posteriors of GW170104
with those of GW150914 and GW151226. We use picoelectron-
volts as a convenient unit because the corresponding frequency
scale is around where GW170104 has greatest amplitude
(1 peV≃ h × 250 Hz, where h is the Planck constant). General
relativity corresponds to A ¼ 0. Markers filled at the top (bottom)
correspond to values of jAj and α for which gravitational waves
travel with superluminal (subluminal) speed.
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powers of frequency, the expansion coefficients being
functions of the source parameters [60,63,171]. In the
effective-precession model, waveforms from numerical-
relativity simulations are also modeled using an expansion
of the phase in terms of the Fourier frequency. To verify if
the detected signal is consistent with GR, we allow the
expansion coefficients to deviate in turn from their nominal
GR value and we obtain a posterior distribution for the
difference between the measured and GR values [172–
177]. We find no significant deviation from the predictions
of GR [5,7]. Combined bounds for GW170104 and the two
confident detections from the first observing run [5] do not
significantly improve the bounds on the waveform phase
coefficients.
Finally, we investigate whether the merger-ringdown

portion of the detected signal is consistent with the inspiral
part [7,178,179]. The two parts are divided at 143 Hz, a
frequency close to the median inferred (detector-frame)
innermost-stable-circular-orbit frequency of the remnant
Kerr black hole. For each part, we infer the component
masses and spins, and calculate from these the final mass and
spin using fits from numerical relativity, as in Sec. IV [45–
48]. We then calculate a two-dimensional posterior distri-
bution for the fractional difference between final mass and
spin calculated separately from the two parts [7,179]. The
expected GR value (no difference in the final mass and spin
estimates) lies close to the peak of the posterior distribution,
well within the 90% credible region. When combined with
the posteriors from GW150914, the width of the credible
intervals decreases by a factor of ∼1.5, providing a better
constraint on potential deviations from GR.
In conclusion, in agreement with the predictions of GR,

none of the tests we performed indicate a statistically
significant departure from the coalescence of Kerr black
holes in a quasicircular orbit.

IX. CONCLUSIONS

Advanced LIGO began its second observing run on
November 30, 2016, and on January 4, 2017 the LIGO-
Hanford and LIGO-Livingston detectors registered a highly
significant gravitational-wave signal GW170104 from the
coalescence of two stellar-mass black holes. GW170104
joins two other high-significance events [2,3] and a
marginal candidate [4] from Advanced LIGO’s first observ-
ing run [5]. This new detection is entirely consistent with
the astrophysical rates inferred from the previous run. The
source is a heavy binary black hole system, similar to that
of GW150914. Spin configurations with both component
spins aligned with the orbital angular momentum are
disfavored (but not excluded); we do not significantly
constrain the component black holes’ spin magnitudes. The
observing run will continue until mid 2017. Expanding the
catalog of binary black holes will provide further insight
into their formation and evolution, and allow for tighter
constraints on potential modifications to GR.

Further details of the analysis and the results are given in
the Supplemental Material [11]. Data for this event are
available at the LIGO Open Science Center [180].
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