

EN BUSCA DE PÚLSARES DANZANTES EN MEDIO DE LA SINFONÍA GRAVITACIONAL DEL UNIVERSO

No todas las <u>ondas gravitacionales</u> son iguales entre sí. Algunas se originan en <u>colisiones cósmicas</u>, cuando <u>aguieros negros</u> o <u>estrellas de neutrones</u> (NS) chocan entre sí, enviando ondas a través del espacio-tiempo. Otras, como las de este estudio, son mucho más débiles, pero duran mucho más tiempo. Se trata de <u>ondas gravitacionales continuas</u> (CW): el «latido» cósmico constante de una estrella de neutrones imperfecta que gira.

Las estrellas de neutrones son núcleos densos y compactos que quedan tras las explosiones supernova de estrellas masivas, con una masa entre 10 y 25 veces superior a la de nuestro Sol. A pesar de tener solo unos 20 km de diámetro, pueden contener más masa que el propio Sol. Algunas giran cientos de veces por segundo y, si su contenido de materia no es perfectamente simétrico, esta ligera imperfección puede hacer que emitan ondas gravitacionales. Cuando una estrella de neutrones forma parte de un sistema binario (véase la figura 1), su señal se vuelve más compleja, pero también puede ser más fuerte. Esto se debe a que la masa transferida desde una estrella compañera a través de la



Figura 1. Una estrella de neutrones (derecha) en un sistema binario con una estrella compañera (izquierda). Fuente: simulador <u>SpaceEngine</u>.

acreción puede acelerar su rotación, lo que aumenta la probabilidad de detectar ondas gravitacionales. Las estrellas de neutrones se encuentran entre los objetos más compactos del universo, y detectar CWs procedentes de ellas nos proporcionaría información valiosa sobre la física de la materia en condiciones extremas. Los astrónomos estiman que puede haber alrededor de cien millones de estrellas de neutrones en nuestra galaxia, pero solo se han identificado unos pocos miles. Resolver esta discrepancia es una de las principales motivaciones para realizar búsquedas como la que se describe en este estudio.

¿CÓMO BUSCAMOS ESTAS SEÑALES?

Cuanto más se desvía una estrella de neutrones de una forma perfectamente esférica, más intensas son las ondas gravitacionales continuas que puede producir. Para encontrar estas señales débiles, científicos y científicas examinan los datos de los detectores de ondas gravitacionales <u>LIGO-Virgo-KAGRA</u> (LVK), en busca de indicios de CWs procedentes de la población de estrellas de neutrones de la Vía Láctea.

Este estudio se centró en estrellas de neutrones desconocidas en sistemas binarios, utilizando datos de la primera parte de la cuarta <u>campaña de observación</u> de LVK, O4a (de mayo de 2023 a enero de 2024). Buscamos en todo el cielo, teniendo en cuenta todas las posibles ubicaciones de las fuentes, señales en el rango de frecuencias de 100 a 350 Hz. Este rango corresponde a las bandas más sensibles de la campaña O4a.

La señal CW procedente de la NS fuente aparece como una frecuencia única y constante en el marco de referencia de la fuente. Pero nuestros detectores se mueven, giran con la Tierra y orbitan alrededor del Sol, lo que provoca una modulación Doppler de la señal. En el caso de una estrella de neutrones en un sistema binario, su propia órbita añade una segunda capa de modulación Doppler. Este efecto «doble Doppler» significa que la frecuencia de la señal se modula siguiendo un patrón distintivo.

Para describir el movimiento de una estrella de neutrones en su órbita, utilizamos tres parámetros: el semieje mayor proyectado (el tamaño de su órbita visto desde la Tierra), el período orbital (el tiempo que tarda en completar una órbita) y la fase orbital (su posición en la órbita en un momento dado). En esta búsqueda, consideramos semiejes mayores proyectados entre 5 y 15 segundos-luz y períodos orbitales entre 7 y 15 días, rangos en los que se encuentran muchas estrellas de neutrones conocidas.

Utilizamos una nueva herramienta de análisis llamada FastTracks, un algoritmo acelerado por GPU diseñado para acelerar las búsquedas de CW. FastTracks comprueba si las trazas en los datos de tiempo-frecuencia (véase la figura 2) son coherentes con el aspecto que debería tener una señal de CW.

PARA MÁS INFORMACIÓN:

Visita nuestras <u>www.ligo.org</u> páginas web: <u>www.virgo-gw.eu</u>

gwcenter.icrr.u-tokyo.ac.jp/en/

Nuestra búsqueda se realizó en el dominio tiempo-frecuencia, utilizando <u>transformadas de Fourier cortas</u> (SFT) de 1024 segundos cada una. La búsqueda constó de dos pasos: primero aplicamos la <u>transformada de Hough</u> a los datos y buscamos señales persistentes en el <u>espectrograma</u>. En segundo lugar, para las pistas más prometedoras, las volvimos a calcular utilizando las pistas de potencia de las SFT.

SENSIBILIDAD DE LA BÚSQUEDA E IMPLICACIONES ASTROFÍSICAS

No encontramos ninguna evidencia de señales de ondas gravitacionales continuas en esta búsqueda. Sin embargo, este resultado nulo nos permite determinar la sensibilidad de nuestra búsqueda, es decir, a qué distancia podríamos haber detectado tales señales si hubieran estado presentes. Para ello, inyectamos miles de señales CW simuladas en los datos y medimos la frecuencia con la que nuestro análisis las recuperaba. A partir de estas pruebas, determinamos la amplitud más pequeña de la señal que nuestra búsqueda podía detectar, logrando las mejores sensibilidades hasta la fecha para esta región del espacio de parámetros.

Mostramos la sensibilidad de nuestra búsqueda de dos formas: la figura 3 muestra la distancia máxima a la que nuestra búsqueda podría detectar una estrella de neutrones, para diferentes valores posibles de su elipticidad (una medida de cuánto se desvía la forma de la estrella de la simetría axial perfecta). Las estrellas más deformadas pueden producir señales CW más fuertes, lo que las hace detectables desde mayores distancias. La figura 4 presenta los mismos resultados desde una perspectiva diferente: la deformación máxima permitida de una estrella de neutrones sin ser detectada por nuestra búsqueda, en función de la frecuencia. Nuestra búsqueda consideró fuentes con tasas de desaceleración de la frecuencia de emisión insignificantes (el doble de la tasa de desaceleración de la estrella de neutrones emisora). En ambas figuras, las regiones sombreadas marcan los casos con tasas de desaceleración requeridas que estaban fuera del rango que exploramos.

Estos resultados establecen los límites más estrictos hasta la fecha para las señales de CW procedentes de estrellas de neutrones desconocidas en sistemas binarios para los parámetros orbitales explorados. Han sido posibles gracias a dos factores clave: la mejora de la sensibilidad de los detectores durante la campaña de observación O4a y el rendimiento optimizado de nuestro nuevo algoritmo FastTracks. Incluso sin una detección, estas restricciones son valiosas, ya que reducen el rango de propiedades posibles de la población de estrellas de neutrones invisibles de nuestra galaxia.

GLOSARIO

Acreción: transferencia de materia entre dos cuerpos en órbita debido a la acción de la gravedad. La materia que cae suele formar un disco de acreción debido a la conservación del momento angular. En este disco, el gas gira en espiral hacia el centro, calentándose a medida que el potencial gravitatorio se convierte en energía térmica.

Campaña de observación: periodo durante el cual nuestros interferómetros recogen datos para su análisis astrofísico.

Elipticidad: medida de lo lejos que está un cuerpo de la esfericidad, definida como la deformación relativa a lo largo del plano ecuatorial con respecto a la deformación a lo largo de la dirección perpendicular.

Espectrograma: representación visual de la composición de frecuencias de una serie temporal. (Wikipedia)

Estrella de neutrones: resto del proceso de supernova que sufre una estrella con una masa entre 8 y 25 veces la masa de nuestro Sol. Las estrellas de neutrones típicas tienen una masa de entre 1 y 2 masas solares y un radio de entre 10 y 15 kilómetros, siendo algunos de los objetos más compactos jamás descubiertos.

Estrella masiva: las estrellas masivas tienen masas superiores a aproximadamente 8 veces la <u>masa del Sol</u>. Solo estas estrellas masivas pueden formar una estrella de neutrones después de explotar como supernova. Si tienen masas inferiores, el remanente se convierte en una estrella enana blanca.

FastTracks: motor masivamente paralelo diseñado para evaluar las estadísticas de detección de señales de ondas gravitacionales continuas utilizando computación GPU en datos similares a la transformada de Fourier corta.

Kiloparsec (kpc): mil parsecs. Un <u>parsec</u> es una unidad astronómica de longitud, que corresponde aproximadamente a 3.26 años luz o 30 billones de kilómetros.

Ondas gravitacionales continuas: ondas gravitacionales que duran mucho tiempo a una frecuencia aproximadamente constante. Estas ondas son creadas por fuentes como estrellas de neutrones que giran rápidamente con, por ejemplo, una pequeña desviación de la simetría axial perfecta: las ondas son extremadamente débiles, pero duran mucho más tiempo que el tiempo de observación. Esto nos permite analizar largos tramos de datos para extraer la señal débil del ruido. Esto difiere de otros fenómenos de ondas gravitacionales, como por ejemplo las coalescencias binarias compactas, en las que se emiten señales fuertes pero de corta duración. (LIGO, AEI)

Segundo-luz: la distancia que recorre la luz en un segundo. (Wikipedia)

Sistema binario: par de objetos astronómicos unidos por su atracción gravitatoria. (Wikipedia)

Tasa de desaceleración: velocidad a la que una estrella de neutrones en rotación se ralentiza debido a la emisión de energía a través de ondas electromagnéticas o gravitacionales.

Transformada de Hough: algoritmo para identificar formas bien descritas en imágenes, como las descritas por un espectrograma. (Wikipedia)

Unidad de procesamiento gráfico (GPU): hardware especializado adecuado para el procesamiento de datos mediante

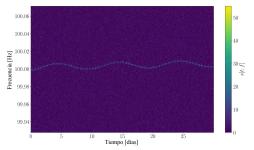


Figura 2: Una señal CW simulada en un espectrograma (gráfico que muestra la frecuencia de la señal en función del tiempo). Este ejemplo muestra una estrella de neutrones que gira 50 veces por segundo y orbita alrededor de una compañera cada 10 días. Las modulaciones de amplitud se deben al cambio diario en la sensibilidad de los detectores para esa parte del cielo.

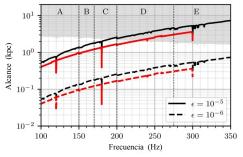
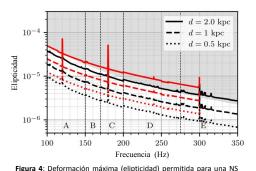



Figura 3: Alcance astrofísico máximo en kiloparsecs (kpc) cubierto por la búsqueda en función de la frecuencia. Las dos curvas negras representan diferentes valores de elipticidad de las estrellas de neutrones. Cuanto mayor sea la elipticidad, más fuertes serán las ondas gravitacionales generadas. La zona sombreada en gris indica las distancias excluidas por el límite impuesto por la desaceleración máxima utilizada en el análisis. La figura muestra una comparación entre los resultados de la búsqueda anterior (O3a BinarySkyHough, en roio) y los resultados de la presente búsqueda (en negro).

fuera del alcance de nuestra búsqueda en función de la frecuencia. Las curvas representan, a diferentes frecuencias, el grado de deformación que debe tener una NS para producir una CW detectable con nuestra búsqueda. La zona sombreada en gris indica los valores excluidos por ser superiores a la desaceleración máxima utilizada en nuestra búsqueda. La figura muestra una comparación entre los resultados de la búsqueda anterior (O3a BinarySkyHough, en rojo) y los resultados de la presente búsqueda (en negro).

PARA MÁS INFORMACIÓN:

Visita nuestras <u>www.ligo.org</u> páginas web: <u>www.virgo-gw.eu</u>

gwcenter.icrr.u-tokyo.ac.jp/en/

Lee una versión preliminar gratuita del artículo científico completo <u>aquí</u> o en <u>arxiv</u>.

Lee una introducción a las ondas gravitacionales continuas aquí.

Traducción al castellano por Pablo García y Joan-René Mérou (a partir de la versión original en inglés).