Detections
Information about gravitational-wave detections made by the LIGO-Virgo-KAGRA Collaborations to date.
Jump to a separate page for a specific event (listed in reverse-chronological order of announcement date), or see the General Detection Resources section below for further information on our detected signals.
- O3b Catalog (GWTC-3: Summary of detections during the second half of the third observing run.)
- GW200105 & GW200115 (First confirmed neutron star-black hole mergers.)
- O3a Catalog (GWTC-2: Summary of detections during the first half of the third observing run.)
- GW190521
- GW190814
- GW190412
- GW190425
- O1/O2 Catalog (Summary of detections during first and second observing runs.)
- GW170608
- GW170817 (First binary neutron star detection; first electromagnetic counterpart.)
- GW170814
- GW170104
- GW151226
- GW150914 (First detection.)
General Detection Resources
Documents, Websites, & Multimedia
- Full list of LSC Publications. (See Runs O1 and higher for papers following the first detection.)
- Science Summaries
- Gravitational Wave Open Science Center (GWOSC): Download LIGO/Virgo data or explore tutorials on gravitational-wave data analysis. See also their data release page to download LIGO/Virgo data.
- Timeline and brief history of the LIGO project.
- The Caltech Media Assets page for GW150914 contains a wealth of useful documents, graphics, and video.
- Masses in the Stellar Graveyard: Interactive graphic showing known stellar-mass black holes and neutron stars with mass measurements. (Northwestern/Frank Elavsky/LIGO-Virgo)
- Black Hole Bubble Diagram: Interactive graphic showing known stellar-mass black holes from gravitational-wave candidates and X-ray binaries. (Cardiff University School of Physics and Astronomy/Chris North)
- LIGO Compact Binary Catalogue: Interactive plot showing properties of gravitational-wave detections and candidates. (Cardiff University School of Physics and Astronomy/Chris North)
- Gravitational Wave Viewer: Interactive gravitational waveform viewer, showing the shapes of the gravitational-wave signals detected by LIGO-Virgo (Cardiff University School of Physics and Astronomy/Chris North)
- Sounds of Spacetime: A website that explains the physics of gravitational waves via an analogy between gravitational waves and audio signals. (Montclair State University/Marc Favata)
- LIGO Gravoscope: An interactive tool that lets you compare visions of the Universe in a range of wavelengths. Also shows locations of detected gravitational-wave signals. (Cardiff University Astronomy and Astronomy Instrumentation Groups)
- Gravity Spy: a citizen-science project to help LIGO search for gravitational waves by improving glitch classification.
- Einstein@Home: use your computer's idle processing time to help search for pulsars using gravitational wave, radio, and gamma-ray data.
- Educator's Guide: Contains background material on gravitational waves and classroom activities that align with K-12 science standards. (Sonoma State University)
- Image gallery hosted at the LIGO Lab site.
- LSC Youtube Channel, Facebook page, and Twitter page.
- "Chirp" ringtones from the first two detections. (Instructions). GW150914 [m4r file (iPhone) | mp3 file (Android)]; GW151226 [m4r file (iPhone) | mp3 file (Android)]
Gravitational-Wave candidate events from the current observing run
Since 2019, we issue prompt Public Alerts for Gravitational-Wave candidate events from ongoing observing runs. Note that these should not be considered as confirmed detections until publication of the full analysis results. See here for details about the current observing run and public alerts system, and links to useful resources for recent candidates.
At a glance

GW150914 signal observed by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. The signals came from two merging black holes, each about 30 times the mass of our sun, lying 1.3 billion light-years away. The top two plots show data received at Livingston and Hanford, along with the predicted shapes for the waveform. These predicted waveforms show what two merging black holes should look like according to the equations of Albert Einstein's general theory of relativity, along with the instrument's ever-present noise. Time is plotted on the X-axis and strain on the Y-axis.

Masses of LIGO/Virgo detections. LIGO and Virgo have observed the merger of several compact object binaries. The black holes represent a new population with masses that are larger than what had been seen previously with X-ray studies alone. This plot shows the masses of the binary components before merger, as well as the mass of the merger remnant. [Image credit: LIGO-Virgo/Northwestern Univ./Frank Elavsky]