News
Gravitational Wave Detectors Start Next Observing Run to Explore the Secrets of the Universe
24 May 2023 -- Today the LIGO-Virgo-KAGRA (LVK) Collaboration begins a new observing run with upgraded instruments, new and even more accurate signal models, and more advanced data analysis methods.
This observing run, known as O4, promises to take gravitational-wave astronomy to the next level. O4 will begin on May 24th and last 20 months, including up to two months of commissioning breaks. It will be the most sensitive search yet for gravitational waves. LIGO will resume operations on May 24th, while Virgo will join later in the year. KAGRA will join for one month, beginning May 24th, rejoining later in the run after some upgrades.
The LIGO detectors will begin O4 approximately 30% more sensitive than before. This increased sensitivity will result in a higher rate of observed gravitational-wave signals, resulting in a detection of a merger every 2 or 3 days.
For more details read the full news item.
Gravitational wave detectors prepare for next observing run
12 May 2023 -- The LIGO-Virgo-KAGRA collaboration is making progress towards the start of the next observing run. After three years of work to improve the performance of the detectors, Observing Run 4 (O4) is planned to start on May 24th, 2023. The LIGO detectors have moved from commissioning to running in engineering mode in preparation for O4. Virgo is also running in engineering mode, but for a limited fraction of time, giving priority to commissioning activities aimed at improving their sensitivity. KAGRA will continue commissioning up to one week before the start of the O4 to improve sensitivity.
The aim of this collaborative engineering run is to test the upgraded instruments and the systems required for the network of detectors to observe together.
The latest upgrades to the LIGO and Virgo instruments will result in more sensitive detectors, capable of sensing even fainter gravitational waves — which also means detecting more events than ever before.
For more details read the full news item.
Infographic explaining the transition between observing runs. [Image credit: LIGO/Virgo/KAGRA]
India approves construction of its own LIGO
17 Apr 2023 -- The Indian government has granted the final approvals necessary for construction to begin on LIGO-India, a nearly identical version of the twin LIGO facilities. The Indian government will spend about $320 million to build LIGO-India, with first observations expected by the end of the decade. The planned facility will be built near the city of Aundha in the Indian state of Maharashtra. With its advanced gravitational-wave-sensing technology, LIGO-India will greatly improve the ability of scientists to pinpoint the sky locations of the sources of gravitational waves. Because of its location on Earth with respect to LIGO, Virgo, and KAGRA, it will also fill in blind spots in the current gravitational-wave network. For more details read the full story at Caltech.edu.
Update on the next LIGO/Virgo/KAGRA observing run
31 Jan 2023 -- The LIGO–Virgo–KAGRA collaborations have released an update of their observing plans. The next observing run (O4) has been delayed, with an expected start now planned for late May 2023. The anticipated duration of the O4 run has also been extended to 18 calendar months rather than 12. For more details see the full announcement on the observing plans website.
Open LVKEM Telecon on July 21st
21 Jul 2022 -- The LIGO–Virgo–KAGRA collaborations will host a one-hour Zoom telecon on July 21st at 14:00 UTC (0900 US Central time), to share and discuss plans for the upcoming O4 observing run, including the run schedule and some planned changes to the public alert infrastructure. All are welcome; register in advance at bit.ly/3PbWa48.
LIGO-Virgo-KAGRA webinar on detector upgrades for O4
25 Apr 2022 -- On Thursday 28 April 2022, at 10:00am Eastern US, the LIGO-Virgo-KAGRA Collaboration will host an online webinar entitled “Update on the LIGO, Virgo, and KAGRA detector upgrades for O4” at which we will provide an update on the detector upgrades for O4. This is the first in a series of virtual events discussing plans for O4 and future observing runs.
The webinar will open with a short review of run scheduling by one of the Spokespersons. We will then give an overview of the upgrades that will be completed on each instrument for O4, their anticipated impact on sensitivity, current status, and any schedule/sensitivity risks that remain between now and the planned start of O4.
The Zoom webinar is open to all. Registration information and an abstract are available at this URL.
A recording will be made available on our YouTube channel.
LIGO-Virgo-KAGRA webinar on "Towards understanding neutron stars with continuous gravitational waves"
21 Mar 2022 -- On Thursday 24 March 2022, at 10:00am Eastern US (other time zones below), the LIGO-Virgo-KAGRA Collaboration will host an online webinar entitled “Towards understanding neutron stars with continuous gravitational waves.” An abstract for the seminar and further information can be found in this pdf flyer.
The Zoom webinar is open to all. Registration information and an abstract are available at this URL.
A recording will be made available on our YouTube channel.
Statement on the war in Ukranie
9 Mar 2022 -- The Russian military invasion of Ukraine is causing death, pain and suffering. We sympathize with those directly impacted by this senseless war and we call for an immediate end to the military actions against Ukraine.
As an international collaboration, we work together to answer some of the most challenging scientific questions of our time. We benefit from the free exchange of ideas across international borders. We embrace cooperation, value discourse, and shun violent conflict.
We stand in solidarity with the people of Ukraine and we are determined to support those with friends and family directly affected by this illegal war.
We identify with the Russian citizens who oppose the invasion of Ukraine.
We call on the scientific community to actively promote a peaceful, diplomatic resolution of this crisis.
LIGO-Virgo-KAGRA publish new results from the O3 GEO-KAGRA observing run
3 Mar 2022 -- In a new paper submitted to the arXiv, the LIGO-Virgo-KAGRA Collaborations have reported the results of the first joint observation of the KAGRA detector in Japan with the UK-German interferometer GEO600, located near Hannover. The two-week observing run took place in April 2020. Our analysis involved searching for multiple classes of gravitational-wave signals, including all-sky searches for binary neutron star coalescences and targeted searches for signals associated with gamma-ray bursts reported during the observing run. Although no gravitational-wave signals were identified, these searches demonstrate the feasibility and utility of KAGRA as a member of the global gravitational-wave detector network. The paper is available on arXiv.org, and a Science Summary is available here on ligo.org.
LIGO-Virgo-KAGRA webinar on "Searching for continuous gravitational waves from unknown sources"
17 Feb 2022 -- On Thursday 24 February 2022, at 10:00am Eastern US, the LIGO-Virgo-KAGRA Collaboration will host an online webinar entitled “Searching for continuous gravitational waves from unknown sources” at which we will motivate and present the latest searches for such sources in the LIGO and Virgo data from the third observing run.
The Zoom webinar is open to all. Registration information and an abstract are available at this URL.
A recording will be made available on our YouTube channel.
LIGO-Virgo-KAGRA publish new results on sources of continuous gravitational waves
27 Jan 2022 -- In three papers recently submitted to the arXiv, the LIGO, Virgo and KAGRA Collaborations present the results of new searches for continuous gravitational waves: long-duration signals from astrophysical sources with a slowly-evolving frequency. These searches were carried out on data from our third Observing Run (O3). The three papers focus on:
- Narrow-band searches for continuous and long-duration transient gravitational waves from known pulsars in our galaxy [arXiv paper] [science summary]
- All-sky searches for rotating neutron stars which are not associated with known pulsars [arXiv paper] [science summary]
- Searches for a “wandering” continuous wave signal from low-mass X-ray binary Scorpius X-1 [arXiv paper] [science summary]
LIGO-Virgo-KAGRA webinar on Testing General Relativity with GWTC-3
24 Jan 2022 -- With the most recent gravitational wave transient catalog GWTC-3, the LIGO/Virgo detectors have detected about 90 compact binary mergers, including binary black holes, binary neutron stars, and neutron star--black hole pairs. Among the 90 events, 35 compact binary mergers from the second half of the third observing run(O3b) were reported for the first time. On Thursday 27 January 2022, at 9AM US Eastern time (1400 UTC), the LIGO-Virgo-KAGRA Collaboration will host a webinar discussing results from a recent paper where we combined the new observational data with older data to look for possible departures from GR.
Register for this Zoom webinar at this URL. You can also live-stream the webinar on YouTube. See also this pdf flyer on the webinar.
A recording will be made available on our YouTube channel.
LIGO, Virgo and KAGRA present new tests of Einstein's gravity using latest gravitational-wave catalog
14 Dec 2021 -- The LIGO-Virgo-KAGRA Collaboration has submitted a paper to the arXiv presenting new results from a series of tests of general relativity, Einstein's theory of gravity. These tests were carried out using the latest gravitational-wave events compiled in our new catalog,
Two LIGO-Virgo-KAGRA webinars to discuss further observational results
7 Dec 2021 -- The LIGO-Virgo-Kagra collaborations will host two additional public webinars this week, presenting further results related to compact binary discoveries made during the third observing run. These two webinars follow the first of this week’s webinars, “GWTC-3: Compact Binary Coalescences Observed During the Second Part of the Third Observing Run", which was held on Mon, 6 Dec, at 10:00 Eastern US. (A recording of that webinar is available here.)
The next webinar is on Thursday, 9 Dec 2021, at 10:00am Eastern US time. That webinar will present "Constraints on the cosmic expansion history from GWTC-3." You must register (in advance) at this URL.
The final webinar for the week is on Friday, 10 Dec 2021, at 10:00am Eastern US time. That webinar will present “The population of merging compact binaries inferred using gravitational waves through GWTC-3." You must register (in advance) at this URL.
Recordings from both webinars are available on our YouTube channel.
LIGO-Virgo-KAGRA sets new constraints on gravitational waves from continuous sources
1 Dec 2021 -- While our catalog of transient gravitational wave events from compact binaries keeps growing, the LIGO, Virgo, and KAGRA Collaborations are also searching for other types of astrophysical signals. In three papers recently submitted to the arXiv, we have placed new constraints on continuous gravitational waves from various source classes. Continuous gravitational-waves are long-duration signals with a slowly-evolving frequency. The source classes constrainted in these studies involved:
- Targeted searches for signals from 236 known pulsars. [arXiv paper] [science summary]
- Wide parameter space searches for signals from two famous supernova remnants. [arXiv paper] [science summary]
- A search for signals from dark matter clouds (scalar bosons) around spinning black holes. [arXiv paper] [science summary]
LIGO-Virgo-KAGRA webinar to discuss new observational results
30 Nov 2021 [updated 7 Dec 2021] -- On Monday 6 December 2021, at 10:00AM US Eastern time, the LIGO-Virgo-Kagra collaborations will host an online webinar entitled “GWTC-3: Compact Binary Coalescences Observed During the Second Part of the Third Observing Run.” This webinar will present GWTC-3 and the latest LIGO and Virgo observations from the second part of their third observing run (O3b). We will discuss the state of the instruments in O3b, the data quality, the results of our search analyses, and the inferred properties of selected candidates. A Q&A session will follow including experts in instrumentation, data analysis and astrophysical interpretation.
The webinar was open to all. A recording is now available at his URL.
LIGO-Virgo-KAGRA webinar to discuss new observational results
18 Nov 2021 [updated 30 Nov 2021] -- On Monday 22 November 2021, at 10:00AM Eastern US time, the LIGO-Virgo-Kagra Collaborations will host an online webinar entitled "Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run." The presenters will report on the gravitational-wave transient catalog release GWTC-2.1 and host a Q&A session afterward. <\p>
A recording of the webinar can be found here.
LIGO Virgo and KAGRA release further science results from new gravitational-wave catalog
13 Nov 2021 -- Coinciding with release of the GWTC-3 catalog of 90 gravitational-wave events, the LIGO-Virgo-KAGRA Collaboration has submitted three companion papers presenting new results that are enabled by our new catalog. The first paper explores what we can learn from GWTC-3 about the population of black holes and neutron stars, and how properties like their masses and spins can help us understand how they formed. The second paper uses gravitational-wave sources to obtain a new and significantly improved estimate of the Hubble constant, which measures how fast the universe is expanding. The third paper presents the results of searches for weak gravitational-wave signals that might be associated with gamma-ray bursts. All three papers are listed on the arXiv. A science summary for each paper and other resources can be found on the O3b Catalog page on ligo.org.
Black holes of ‘all shapes and sizes’ in new gravitational wave catalog
7 Nov 2021 -- The LIGO-Virgo-KAGRA Collaboration has released the largest catalog ever of collisions involving black holes and neutron stars. As detailed in a paper which appeared today on the ArXiv, the Collaboration has detected a further 35 gravitational wave events since the last catalog release in October 2020. These new events were observed between November 2019 and March 2020 and bring to 90 the total number of observed events since LIGO/Virgo operations began.
Of the 35 new events reported here, 32 are most likely mergers involving pairs of black holes. The black holes have a range of sizes, with the most massive around 90 times the mass of our Sun. Several of the resulting black holes that formed from these mergers exceed 100 times the mass of our Sun and are classed as intermediate-mass black holes. Two events contain a black hole/neutron star pair, and a third contains a black hole partnered with either a heavy neutron star or a low-mass black hole.
More information on this updated catalog (GWTC-3) can be found in this news release and on our O3b Catalog detection page.
Table of all gravitational-wave mergers observed by LIGO/Virgo/KAGRA since 2015. [Image credit: Carl Knox, Hannah Middleton, LIGO/Virgo/KAGRA]
LIGO and Virgo release new results from searches for gravitational waves from small black holes
4 Oct 2021 -- In a paper recently submitted to the arXiv, the LIGO and Virgo Collaborations released the results of searches for gravitational waves from the mergers of low-mass black holes. Our paper extends previous analyses in two main ways: we now include data from the Virgo detector and we allow for more unequal mass systems. Our results provide new limits on various astrophysical models (e.g. primordial black holes as dark matter) that could in principle generate the signals that we searched for. The science summary for this paper is also available here.
Updated: Timetable for O3b Bulk Strain Data Release
1 Oct 2021 [updated 5 Nov 2021] -- The LIGO and Virgo collaborations plan to release bulk strain data taken during the second part of O3 on 5 November 2021 at 20:00 ET on 7 November 2021. This is the O3b data release. It includes data taken between 1 November 2019 and 27 March 2020. For more information about LIGO-Virgo data releases, visit https://www.gw-openscience.org.
LIGO, Virgo and KAGRA release new results from searches for gravitational waves from X-ray pulsars
22 Sep 2021 -- In a paper recently submitted to the arXiv, the LIGO, Virgo, and KAGRA Collaborations released the results of searches for continuous gravitational waves from 20 accreting millisecond X-ray pulsars, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Although no signals were detected, this analysis is the most comprehensive and sensitive search to date for gravitational waves from this type of source. The science summary for this paper is also available here.
2020 Breakthrough Prizes recognize contributions to multi-messenger astronomy
9 Sep 2021 -- The LIGO Scientific Collaboration congratulates the winners of the 2022 Breakthrough Prizes - including the winners of the New Horizons in Physics Prize: Alessandra Corsi (Texas Tech University), Gregg Hallinan and Mansi Kasliwal (Caltech), and Raffaella Margutti (UC Berkeley), “for leadership in laying foundations for electromagnetic observations of sources of gravitational waves, and leadership in extracting rich information from the first observed collision of two neutron stars”. Read more about the 2022 winners at breakthroughprize.org.
Winners of the 2022 New Horizons in physics Prize. Clockwise from the top left are Alessandra Corsi, Greg Hallinan, Raffaella Margutti, and Mansi Kasliwal. [Image credit: breakthroughprize.org]
LIGO and Virgo release an extended catalog of binary mergers
2 Aug 2021 -- In a new paper submitted to the arXiv, we present an updated catalog of gravitational-wave candidates from data gathered by the LIGO and Virgo detectors during the first half of their third observing run. This update, called GWTC-2.1 (Gravitational Wave Transient Catalog 2.1), corresponds to the same observing period as GWTC-2, but includes more than 1000 candidate events with a lower statistical significance. While most of these new candidates are likely to be noise, astronomers can use this updated catalog and data from telescopes to try to identify potential multi-messenger events. The science summary for this paper is also available here.
Parameters inferred from the signal for the 8 new significant event candidates in this catalog. From left to right, the figure shows the primary mass m1 and secondary mass m2 (each in units of the solar mass), the mass ratio q, the effective inspiral spin χeff and the luminosity distance DL (in Gigaparsec). The vertical width of each colored region is proportional to the probability that the parameter has the corresponding value on the horizontal axis. [Image credit: LIGO/Virgo]
LIGO, Virgo, and KAGRA release new results from searches for long-duration gravitational-waves bursts
30 Jul 2021 -- In a paper recently submitted to the arXiv, the LIGO, Virgo, and KAGRA Collaborations released the results of searches for long-duration gravitational waves in data from the detectors’ third Observing Run. The techniques used to search for these signals are designed to make minimal or no assumptions, which enables the detection of signals from a wide range of potential sources. Although no detections were found, our results improve---by about a factor of two---limits on the rate of eccentric binary coalescences occurring in the universe. The science summary for this paper is also available here.
LIGO, Virgo, and KAGRA release new results from searches for gravitational waves
12 Jul 2021 -- In two papers recently submitted to the arXiv, LIGO, Virgo, and KAGRA released results of two different searches for gravitational waves in data from the detectors’ third Observing Run. In the first paper we carried out an all-sky search for bulges on rapidly-spinning neutron stars, which would produce a continuous gravitational-wave signal. Although no detections were found, our latest analysis greatly improved the sensitivity over previous all-sky searches. In the second paper we searched for short-duration "bursts" of gravitational waves using two different search algorithms that make minimal assumptions about the details of the gravitational-wave signal. Again, no detections were found, but our search improved upper limits on the rate per unit volume of burst sources by roughly an order of magnitude.
Science summaries for these two papers are also available here and here.
LIGO-Virgo-KAGRA finds elusive mergers of black holes with neutron stars
29 Jun 2021 -- For the first time, researchers in the LIGO-Virgo-KAGRA Collaborations have confirmed the detection of a collision between a black hole and a neutron star. In fact, the scientists detected not one but two such events occurring just 10 days apart in January 2020. The extreme events sent gravitational waves rippling across at least 900 million light-years to reach Earth. In each case, the neutron star was likely swallowed whole by its black hole partner.
The first merger, detected on January 5, 2020, involved a 9-solar-mass black hole and a 1.9-solar-mass neutron star. The second merger was detected on January 15, and involved a 6-solar-mass black hole and a 1.5-solar-mass neutron star. The results were published today, June 29, in The Astrophysical Journal Letters.
For more details, see the full LSC press release and the detection page for GW200105 and GW200115.
An online Zoom webinar discussing these results is scheduled for Thursday, July 1st at 10:00am Eastern Time. You can register for the Zoom webinar at this link.
Still image from a numerical simulation of GW200115, one of the two detected neutron star-black hole mergers. The image shows the gravitational waves in blue and the density of the neutron
stars from yellow to orange (low to high densities).
[Image credit: S.V.Chaurasia (Stockholm University), T. Dietrich (Potsdam
University and Max Planck Institute for Gravitational Physics), N. Fischer, S. Ossokine, H. Pfeiffer (Max Planck Institute for Gravitational Physics)]
LIGO-Virgo-KAGRA webinar to discuss new observational results
27 Jun 2021 [Updated: 29 Jun 2021] -- On Thursday 1 July, at 10:00AM Eastern US time, the LIGO-Virgo-Kagra Collaborations will host an online webinar to discuss the latest results from the third observing run. This will focus on the discovery of the two neutron star-black hole binary mergers, GW200105 and GW200115. You can register for the Zoom webinar at this link. A recording will be posted here following the webinar.
Results of a search for intermediate-mass black holes
31 May 2021 -- The LIGO, Virgo and KAGRA collaborations report the results of a dedicated search for intermediate-mass black holes (IMBHs), using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The paper describing these new results is now available on the ArXiv preprint server or from here. In this new search we again found the event GW190521, the first confirmed intermediate-mass black hole — as previously reported in September 2020 — but with higher significance. We also found some other possible IMBH candidates, but none qualify as significant. However, the results of our search have improved our understanding of the astrophysical merger rates of IMBH binaries. Read more about this analysis in the the science summary.
LIGO/Virgo detectors place constraints on dark photon dark matter
27 May 2021 -- The LIGO, Virgo and KAGRA collaborations have performed the collaboration's first search for dark photon dark matter using data from LIGO and Virgo's third observing run. The search used two methods to strongly constrain the interaction of dark photons with gravitational-wave interferometers to less than one part in 10^46 for a wide range of the parameter space. The paper describing these new results is now available on the ArXiv preprint server. Though no signal was found, the constraints obtained from this search surpass existing ones by several orders of magnitude and show how interferometers can be used as particle physics laboratories. Read more about this analysis in the science summary.
Webinar to discuss recent search for lensing signatures in gravitational wave observations
24 May 2020 -- On 27 May 2021, at 10:00am Eastern US time (2PM UTC) the LIGO, Virgo and KAGRA Collaborations will host a webinar on "Search for lensing signatures in the gravitational-wave observations from the first-half of LIGO-Virgo's third observing run." This will present results from our recent paper: arXiv:2105.06384. An abstract and additional details can be found at this pdf flyer. The Zoom webinar is open to the public; register for it at this link. A recording can be found below.
The first LVC search for gravitational-wave lensing
13 May 2021 -- LIGO/Virgo researchers have performed the collaboration's first search for gravitational lensing signatures using the gravitational-wave observations from the first half of LIGO-Virgo's third observing run.
In a paper now available on the arXiv and here, we study how the gravity of massive objects---acting like a giant "lens"---could possibly change the paths and properties of gravitational waves. While no compelling evidence for lensing was found, the paper discusses statistical forecasts of lensed event rates and places constraints on the binary black hole merger rate. We consider the way lensing could magnify gravitational-wave signals (and possibly contribute to observed high-mass events) or produce candidates for multiple images (created by the waves taking separate paths around a lens). We also discuss the possible effects of smaller “microlenses” on the observed signals.
See the paper's science summary for more details.
Illustration of a binary coalescence magnified by a lens. [Credit: R. Buscicchio, University of Birmingham]
O3a Bulk Strain Data Release
30 Apr 2021 -- The LIGO and Virgo collaborations today released bulk strain data taken during the first six months of the detectors’ third Observing Run. This is the O3a data release. It includes data taken between 1 April 2019 and 30 September 2019. We plan to release the remaining strain data from O3 later this year. For more information about LIGO-Virgo data releases, visit https://www.gw-openscience.org.
Timetable for O3a Bulk Strain Data Release
16 Apr 2021 -- On 30 April 2021 the LIGO and Virgo collaborations plan to release bulk strain data taken during the first six months of O3 on 30 April 2021. This is the O3a data release. It includes data taken between 1 April 2019 and 30 September 2019. We plan to release the remaining strain data from O3 later this year. For more information about LIGO-Virgo data releases, visit https://www.gw-openscience.org.
Search for anisotropies in the gravitational-wave background
16 Mar 2021 -- The LIGO, Virgo and KAGRA collaborations report upper limits on anisotropies in the stochastic gravitational wave background using data from the three observing runs of the Advanced LIGO and Advanced Virgo detectors. The paper describing these new results is now available from the ArXiv preprint server. While no detection has been reported in the paper, we set stringent limits on the possible anisotropies in the gravitational-wave background. Read more about this analysis in the science summary here.
LIGO-Virgo-KAGRA webinar to discuss new results on the gravitational-wave background
02 Feb 2021 -- On Thursday 4 February, at 10:00 Eastern US (other time zones below), the LVK will host an online webinar entitled “Constraining astrophysical and cosmological gravitational-wave backgrounds with Advanced LIGO and Virgo's third observing run.” We will present results from our recent papers: arXiv:2101.12248 and arXiv:2101.12130. The webinar is open to all. See this poster for further information.
Please register for the webinar at:
LIGO-Virgo-KAGRA Webinar
Feb 4, 2021 10:00 Eastern Time (US and Canada)
tinyurl.com/lvk-webinar6
Other time zones:
Thu, 4 Feb at 07:00 Los Angeles
Thu, 4 Feb at 09:00 Chicago
Thu, 4 Feb at 16:00 Pisa
Thu, 4 Feb at 20:30 Pune
Fri, 5 Feb at 00:00 Tokyo
Fri, 5 Feb at 02:00 Sydney
A recording is available at https://www.youtube.com/ligovirgo for those who were unable to attend the live event.
New Upper Limits on the Gravitational-Wave Background
01 Feb 2021 -- The LIGO, Virgo and KAGRA collaborations report new upper limits on the background of gravitational waves in the universe, in two papers recently submitted to the ArXiv. The two papers present analyses of data collected during the third observing run (O3) of the Advanced LIGO and Advanced Virgo detectors. This is the first time we have included data from the Virgo detector, in addition to the two LIGO instruments, in our searches for gravitational-wave backgrounds.
In the first paper, we present results from a generic search for the gravitational-wave background generated by different astrophysical and cosmological sources. In our second paper, we present results from a more targeted search for gravitational waves from cosmic strings: hypothetical one-dimensional objects which may have formed in the early universe.
Read more about both papers in the science summaries here and here.
LIGO and Virgo to Receive IEEE Milestone Plaques
25 Jan 2021 -- On February 3, 2021, the IEEE (Institute for Electrical and Electronics Engineers) will host an online event to bestow their Milestone awards to the LIGO and Virgo observatories. These awards recognize "technological innovation and excellence for the benefit of humanity found in unique products, services, seminal papers and patents," according to the IEEE website. More than 160 IEEE Milestones have been awarded to a range of projects, including historical breakthroughs such as Benjamin Franklin's work on electricity and the electrical telegraph.
LIGO and Virgo are being honored for their gravitational-wave antennas and the first detections of gravitational waves. The online event will include the dedication of bronze IEEE Milestone plaques at each observatory, as well discussions with Kip Thorne, Barry Barish, and Rainer Weiss (winners of the 2017 Nobel Prize in Physics). Representatives from Virgo and Kagra will also be speaking, and the governor of Washington and director of the National Science Foundation are expected to attend. See a longer news items at the LIGO Laboratory for more details.
New constraints on continuous gravitational waves from neutron stars
25 Dec 2020 -- Our collaborations report new constraints from two searches for continuous gravitational waves emitted by neutron stars. In a first paper, the LIGO and Virgo collaborations present results from an all-sky search for continuous gravitational waves from unknown neutron stars in binary systems. In a second paper, which is the first using the full data set from the third observing run (O3), our colleagues from the KAGRA collaboration have now officially joined forces with LIGO and Virgo scientists in looking for potential signals from the enigmatic X-ray pulsar J0537-6910. This second analysis also relied on precise timing data from NASA's X-ray telescope NICER on board the International Space Station. Read more about both works in the science summaries here and here.
LIGO/Virgo Webinar to discuss tests of general relativity using the second LIGO-Virgo Gravitational-Wave Transient Catalog
17 Nov 2020 -- On 19 November 2020, at 10:00am Eastern US time the LIGO and Virgo collaborations will host a third webinar devoted to the results of the first-half of the third observing run (O3). This webinar will discuss tests of general relativity using results from the second LIGO-Virgo Gravitational-Wave Transient Catalog," and it is open to all.
Click here to register for the Zoom webinar. The webinar will also be live-streamed on the LIGO-Virgo youtube channel. A recording of the webinar can be found below. This is the third and final webinar presenting results from our GWTC-2 papers.
LIGO/Virgo Webinar to discuss population properties of compact objects from second LIGO-Virgo Gravitational-Wave Transient Catalog
10 Nov 2020 [updated 17 Nov 20202] -- On 12 November 2020, at 4:00pm Eastern US time (9PM UTC) the LIGO and Virgo collaborations hosted a second webinar devoted to the results of the first-half of the third observing run (O3). The title of the webinar is "Population properties of compact objects from the second LIGO–Virgo Gravitational-Wave Transient Catalog." The webinar was open to the public, and a recording can be found below.
LVK Webinar on Population Properties of Compact Objects from GWTC-2. This 1hr 17 min webinar held on 12 November 2020 discusses the properties of the compact object population inferred from the recently released results of the first-half of the O3 observing run. [Credit: LIGO/Virgo]
2020 Prime Minister’s Prize for Science awarded to Gravitational-Wave Scientists
3 Nov 2020 -- The LIGO Scientific Collaboration is delighted to congratulate our LSC OzGrav colleagues David Blair, David McLelland, Susan Scott and Peter Veitch--recipients of the 2020 Prime Minister's Prize for Science, Australia’s most prestigious award for outstanding achievements in scientific research. Their award is in recognition of the recipients’ many years of dedicated work that led to the discovery of gravitational waves, and which continues to yield new discoveries and scientific advances for Australia.
You can read more about the award here.
Winners of the 2020 Australian Prime Minister's Prize for Science. Clockwise from the top-left are David Blair, David McLelland, Peter Veitch, and Susan Scott.
LIGO/Virgo Webinar on the latest results from the first-half of the third observing run
2 Nov 2020 [updated 10 Nov. 2020] -- On Thursday 5 November 2020, at 10:00 Eastern US time, the LIGO and Virgo collaborations hosted an online webinar presenting results from our new paper: "GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run." The webinar was open to the public, and a recording can be found below.
LVK Webinar on GWTC-2 results. This 1hr 3 min webinar held on 5 November 2020 provides an overview of the recently released results from the first half of the O3 observing run. [Credit: LIGO/Virgo]
LIGO and Virgo announce new detections in updated gravitational-wave catalog
28 Oct 2020 -- After several months of thorough analysis, the LIGO Scientific Collaboration and the Virgo Collaboration have released an updated catalog of gravitational wave detections. The catalog contains 39 new signals from black hole or neutron star collisions detected between 1 April 2019 and 1 October 2019, which more than triples the number of confirmed detections. The new set includes some of the most interesting systems we have seen so far, and enables qualitatively new studies of astrophysical populations and fundamental physics.
The sharp increase in the number of detections was made possible by significant improvements to the instruments with respect to previous observation periods. These included increased laser power, improved mirrors and, remarkably, the use of quantum squeezing technology. All together, these enhancements resulted in a ~60% improvement in the range to which signals can be detected. The detectors were also able to operate without interruption more often than in the past, with an improved duty cycle of ~75% vs ~60%.
The new results reported in the extended catalog correspond to only the first six months of LIGO and Virgo’s third observing run. Results from the remaining five months are currently being analyzed. In the meantime, the LIGO and Virgo instruments are undergoing upgrades in preparation for the fourth observing run, for which they will be also joined by the KAGRA detector in Japan.
For more details, see the news story on the LIGO Lab website and the O3a Catalog detection page on ligo.org.
An online Zoom webinar discussing the results of the O3a catalog release is scheduled for Thursday, November 5th, 10:00am Eastern Time. Connection instructions will be posted to ligo.org when available.
Masses of detected LIGO/Virgo compact binaries. This plot shows the masses of all compact binaries detected by LIGO/Virgo, with black holes in blue and neutron stars in orange. Also shown are stellar mass black holes (purple) and neutron stars (yellow) discovered with electromagnetic observations. See also the interactive version of this figure. [Image credit: LIGO/VIrgo/Northwestern Univ./Frank Elavsky]
LIGO Hanford Breaks Ground for New Exploration Center
23 Oct 2020 -- LIGO Hanford, one of two detectors making up the Laser Interferometer Gravitational-wave Observatory, or LIGO, has created a video to commemorate the groundbreaking of its new, modern educational center, located in Richland, Washington. Funded by a $7.7-million grant from the State of Washington, the LIGO Exploration Center will include 50 interactive exhibits and other educational display items, including a gold-plated 2017 Nobel Prize in Physics.
For more details, read the full press release on the LIGO Lab website, and see a video of the virtual groundbreaking on youtube.
A “bang” in LIGO and Virgo detectors signals most massive gravitational-wave source yet
2 Sep 2020 -- On May 21, 2019, LIGO/Virgo researchers detected a signal from the most massive black hole merger yet observed in gravitational waves. The product of the merger is the first clear detection of an “intermediate-mass” black hole, with a mass between 100 and 1,000 times that of the sun.
The detected signal, labeled GW190521, was generated by a source that is roughly 5 gigaparsecs away, making it one of the most distant gravitational-wave sources detected so far. This newest merger appears to be the most massive yet, involving two inspiraling black holes with masses about 85 and 66 times the mass of the sun. The merger created an even more massive black hole, of about 142 solar masses, and released an enormous amount of energy, equivalent to around 8 solar masses.
For more details, read the full press release and see the GW190521 detection page.
Still image from a numerical relativity visualization consistent with GW190521.
[Image credit: LIGO/Virgo/D. Ferguson, K. Jani, D. Shoemaker, P. Laguna.]
Webinar on latest results from the LIGO-Virgo-Kagra Collaboration
1 Sep 2020 [updated 3 Sep 2020] -- On Thursday September 3rd the LIGO-Virgo-Kagra Collaboration will hold a one-hour live-streamed Zoom webinar, discussing the latest discovery from the third observing period (O3): GW190521. The webinar is now scheduled for 1500 CEST (0900 EDT, 0600 PDT, 220 JST). (This is one hour earlier than previously advertised.)
A recording of the webinar can be found below.
LVK GW190521 Webinar. This 1hr 10 min webinar held on 3 September 2020 discusses the detection of GW190521 and associated scientific results.
[Credit: LIGO/Virgo]
LIGO detectors receive a glowing end-of-run review
12 Aug 2020 -- On April 1st 2019 the LIGO Virgo interferometer network began their third Observing Run, O3: a year-long dedicated search for gravitational waves which yielded an impressive haul of 56 candidate events. Now LIGO scientists have published a paper describing the improvements made to the Advanced LIGO detectors for O3 and reviewing the performance of the detectors throughout the Observing Run – during which the instruments were more stable and more sensitive than ever before. Read the full paper at https://arxiv.org/abs/2008.01301.
Simplified optical layout of the Advanced LIGO detectors for O3.
[Credit: LIGO Lab/Caltech/MIT]
Best constraints yet on the size of "mountains" on millisecond pulsars
29 Jul 2020 -- The LIGO and Virgo collaborations report the most stringent constraints yet on the size of deformations on millisecond pulsars in a new paper submitted to the ArXiv. Based on our analysis, the strong gravity of these rapidly spinning neutron stars constrains such deformations to be no bigger than the width of a human hair. While we have not detected gravitational-waves from millisecond pulsars, we have for the first time probed possible gravitational-wave emission mechanisms for these stars, and shown that only very small deformations would be necessary to produce observable gravitational waves.
For more details, read the full summary of our paper.
This is an artist's impression of millisecond pulsar PSR J1023+0038 (white object on the right with magnetic field lines).
It extracts matter from its companion star (red object on the left) via an accretion disk (also shown in red).
[Credit: European Space Agency (ESA).]
LIGO-Virgo finds mystery object in the 'mass gap'
23 Jun 2020 -- When the most massive stars die, they collapse under their own gravity and leave behind black holes; when stars that are a bit less massive die, they explode in supernovas and leave behind dense, dead remnants of stars called neutron stars. For decades, astronomers have been puzzled by a gap that lies between neutron stars and black holes: the heaviest known neutron star is no more than 2.5 times the mass of our sun, or 2.5 solar masses, and the lightest known black hole is about 5 solar masses. Now, scientists from LIGO and Virgo have announced the discovery of an object of 2.6 solar masses, placing it firmly in the mass gap. The object was found on August 14, 2019, as it merged with a black hole of 23 solar masses, generating gravitational waves that were detected by the LIGO and Virgo detectors.
For more details, read the full press release and see the GW190814 detection page.
GW190814: heaviest neutron star or lightest black hole? In August 2019, the LIGO-Virgo gravitational-wave network witnessed the merger of a black hole with 23 times the mass of our sun and a binary companion 2.6 times the mass of the sun. Scientists do not know if the companion was a neutron star or a black hole, but either way it set a record as being either the heaviest known neutron star or the lightest known black hole.
[Image credit: LIGO/Caltech/MIT/R. Hurt (IPAC).]
Webinar on latest results from the LIGO-Virgo-Kagra Collaboration
21 Jun 2020 -- On June 25th the LIGO-Virgo-Kagra Collaboration held a one-hour live-streamed Zoom webinar, discussing discoveries from the third observing period (O3). The webinar took place at 14:00 UTC (07:00 PDT, 09:00 CDT, 16:00 CEST, 23:00 JST).
A recording of the webinar can be found below.
LVK GW190814 Webinar. This 1hr 12 min webinar held on 25 June 2020 discusses the detection of GW190814 and associated scientific results.
[Credit: LIGO/Virgo]
LIGO-Virgo Detect the Merger of Two Black Holes with Unequal Masses
20 Apr 2020 -- On April 12, 2019, the twin LIGO detectors and the Virgo detector observed gravitational-waves from the merger of two black holes. While nearly all previous detections originated from binary black holes with almost equal masses, this event (labeled GW190412) displayed clear signatures of an unequal mass binary. A detailed analysis of the gravitational-wave signal indicates that the two black holes had masses of about 30 and 8 times the mass of the sun. General relativity predicts that binary systems with such mass differences will introduce higher "harmonics" into the waveform, and these were in-fact observed for the first time in this event.
For more details, see the GW190412 detection page.
Still image from a numerical simulation of an unequal mass binary black hole merger, with parameters consistent with GW190412. [Image credit: N. Fischer, H. Pfeiffer, A. Buonanno (Max Planck Institute for Gravitational Physics), Simulating eXtreme Spacetimes project]
LIGO's Third Observing Run Suspended Early Due to COVID-19 Pandemic
26 Mar 2020 -- Due to the COVID-19 pandemic, LIGO observing mode operations will end on March 27, 2020. The decision to halt O3 was not an easy one, however the current worldwide COVID-19 pandemic demands that we make public health and safety our top priority. It is unknown at this time when observing mode operations may resume. In spite of the early suspension, the O3 run has been a tremendous success and we look forward to the science to come from the O3 events and future observing runs with the gravitational-wave detector network.
For more additional details, see- LIGO Laboratory news release on O3 suspension
- LIGO Laboratory's Response to COVID-19
- News updates on the Virgo homepage
- Updates on the LSC Observing Plans and Public Alerts webpage
LIGO-Virgo Network Catches Another Neutron Star Collision
6 Jan 2020 -- On April 25, 2019, the LIGO Livingston Observatory picked up what appeared to be gravitational ripples from a collision of two neutron stars. Now, a new study confirms that this event (GW190425) was indeed likely the result of a merger of two neutron stars. This would be only the second time this type of event has ever been observed in gravitational waves. GW190425 is the first gravitational-wave event discovered with data from a single observatory. While no electromagnetic counterpart was found, this system is notable for having a total mass that exceeds that of known galactic neutron star binaries.
For more details, see the full press release and other information at the GW190425 detection page.
Artist's rendition of a neutron star merger. [Image credit: National Science Foundation/LIGO/Sonoma State University/A. Simonnet.]
LIGO's Third Observing Run Resumes
5 Nov 2019 -- On November 1st at 15:00 UTC, the LIGO and Virgo gravitational wave detectors resumed their search for gravitational waves after taking a planned month-long break to perform maintenance and upgrades. All three sites halted operations for the entire month of October. Virtually all of the work planned for LIGO's two detectors was completed by October 31st. This included inspecting and cleaning of test masses, installation of additional baffles to reduce light scattering, replacing a turbomolecular vacuum pump, and removing an unused portion of the "H2" vacuum system. Virgo engineers focused on increasing the laser input power from 19 W to 26 W. The extent to which this work has improved the instruments’ sensitivities will be known in the weeks to come. The second half of LIGO's third observing run will conclude on April 30th, 2020.
For more details, read the full news release at the LIGO Lab webpage.
Livingston engineer, Danny Sellers, paints the mirror with a substance called "first contact". This is used to help clean the mirror, which hangs at the bottom of a quadruple pendulum suspension system to isolate it from terrestrial vibrations. [Caltech/MIT/LIGO Lab]
KAGRA to Join LIGO and Virgo in Hunt for Gravitational Waves
4 Oct 2019 -- Japan's Kamioka Gravitational-Wave Detector (KAGRA) will soon team up with the National Science Foundation's Laser Interferometer Gravitational-Wave Observatory (LIGO) and Europe's Virgo in the search for subtle shakings of space and time known as gravitational waves. Representatives for the three observatories signed a memorandum of agreement (MOA) about their collaborative efforts today, October 4. The agreement includes plans for joint observations and data sharing.
"This is a great example of international scientific cooperation," says Caltech's David Reitze, executive director of the LIGO Laboratory. "Having KAGRA join our network of gravitational-wave observatories will significantly enhance the science in the coming decade."
"At present, KAGRA is in the commissioning phase, after the completion of its detector construction this spring. We are looking forward to joining the network of gravitational-wave observations later this year," says Takaaki Kajita, principal investigator of the KAGRA project and co-winner of the 2015 Nobel Prize in Physics.
For more details, read the full news release at the LIGO Lab webpage.
An illustration of the underground KAGRA gravitational-wave detector in Japan. [Image credit: ICRR, Univ. of Tokyo.]
LIGO's Commissioning Break Commences
3 Oct 2019 -- On October 1st, LIGO’s Hanford (LHO) and Livingston (LLO) detectors will temporarily halt observations to undergo a series of instrument upgrades and fixes. This kind of “commissioning break” sometimes occurs during LIGO’s long observing runs. The current run, O3, began on April 1 2019, when Virgo, the European-based gravitational-wave detector, located at the European Gravitational Observatory (EGO) in Italy, also started observing. Virgo is also pausing this month to perform upgrades that will improve their sensitivity and their uptime. All three detectors will resume operations on November 1st.
Commissioning breaks are typically month-long breaks during observing runs (as opposed to year-or-more long breaks between observing runs) when staff can make upgrades or repairs that would take more time than is available during weekly maintenance windows. The longer break gives the observatory sites an opportunity to make sure they are working optimally for the duration of the observing run, which in this case is scheduled to end on April 30, 2020.
For more details, read the full story at the LIGO Lab webpage.
Inside a HAM chamber as Advanced LIGO was being assembled prior to its first observing run in 2015. [Credit: Caltech/MIT/LIGO Lab/Greg Grabeel]
LIGO's Third Observing Run Started with a Bang!
12 Aug 2019 -- LIGO is just four months into its third observing run (O3) and there’s already a lot to be excited about. O3 began on April 1st, 2019 with high expectations for detections thanks to a series of upgrades that were made to both instruments after LIGO’s second observing run ended on August 25th, 2017. Also joining O3 on April 1st was Virgo, the European-based gravitational-wave detector in Italy, which almost doubled its sensitivity since its last run.
By July 31st, 2019, LIGO had sent out 25 alerts regarding possible detections; three have since been retracted, leaving 22 ‘candidate’ gravitational wave events. You can learn more about each of these (and subsequent candidates) by visiting the LIGO/Virgo detection alert page GraceDB or the UK-based GW Public Alerts page.
So far, no electromagnetic counterparts related to our public alerts have been observed, but all candidates are being actively analyzed by LSC/Virgo science teams. A sensitivity improvement will be implemented in an upcoming commissioning break when LIGO will temporarily halt the observing run (from October 1 to 3, with the run resuming on November 1).
For more details, read the full story at the LIGO Lab webpage.
Selected skymap images showing the likely position of candidate gravitational wave sources. The orange blobs show the 90% probability regions for the source location. [Credit: LIGO-Virgo/Cardiff Uni./C. North]
LIGO and Virgo Detect Neutron Star Smash-Ups
2 May 2019 -- On April 25, 2019, the National Science Foundation's Laser Interferometer Gravitational-Wave Observatory (LIGO) and the European-based Virgo detector registered gravitational waves from what appears likely to be a crash between two neutron stars—the dense remnants of massive stars that previously exploded. One day later, on April 26, the LIGO-Virgo network spotted another candidate source with a potentially interesting twist: it may in fact have resulted from the collision of a neutron star and black hole, an event never before witnessed. In addition to the two new candidates involving neutron stars, the LIGO-Virgo network has, during the first month of the third observing run (O3), spotted three likely black hole mergers.
"The universe is keeping us on our toes," says Patrick Brady, spokesperson for the LIGO Scientific Collaboration and a professor of physics at the University of Wisconsin-Milwaukee. "We're especially curious about the April 26 candidate. Unfortunately, the signal is rather weak. It's like listening to somebody whisper a word in a busy café; it can be difficult to make out the word or even to be sure that the person whispered at all. It will take some time to reach a conclusion about this candidate."
More information is contained in the the full press release.
LSC Elects Patrick Brady as New Spokesperson
31 Mar 2019 -- Patrick Brady, Professor of Physics and current Director of the Leonard E Parker Center for Gravitation, Cosmology and Astrophysics at the University of Wisconsin Milwaukee, has been elected spokesperson of the LIGO Scientific Collaboration. He succeeds outgoing spokesperson David Shoemaker. More information about Patrick can be found here.
Patrick Brady [Image credit: UWM]
LIGO and Virgo Resume Search for Ripples in Space and Time
26 Mar 2019 -- LIGO is set to resume its hunt for gravitational waves—ripples in space and time—on April 1, after receiving a series of upgrades to its lasers, mirrors, and other components. LIGO now has a combined increase in sensitivity of about 40 percent over its last run, which means that it can survey an even larger volume of space for gravitational-wave events like black hole collisions.
Joining the search will be Virgo, the European-based gravitational-wave detector, located at the European Gravitational Observatory (EGO) in Italy, which has almost doubled its sensitivity since its last run and is also starting up April 1.
For more information, read the full press release.
(Left Image): Detector engineers Hugh Radkins (foreground) and Betsy Weaver (background) are pictured here inside the vacuum system of the detector at LIGO Hanford Observatory, beginning the hardware upgrades necessary for Advanced LIGO's third observing run. [Image credit: LIGO/Caltech/MIT/Jeff Kissel].
(Right Image): LIGO team members install in-vacuum equipment that is part of the squeezed-light upgrade. [Image credit: LIGO/Caltech/MIT/Matt Heintze]
O2 Data Set Now Available
27 Feb 2019 -- LIGO and Virgo are pleased to announce that the strain data from the O2 observing run have been released. These data are now available through the Gravitational Wave Open Science Center (gw-openscience.org).
The O2 observing run began on November 30, 2016 and ended on August 25, 2017. The release includes over 150 days of data from each of the two LIGO observatories, as well as 20 days of data from Virgo, making this the largest data set of “advanced” gravitational wave detectors to date. Observations in O2 include seven binary black hole mergers, as well as the first binary neutron star merger observed in gravitational waves, all recently published with the GWTC-1 catalog. The LIGO Scientific Collaboration and Virgo Collaboration have published a number of papers based on these data; please see the LIGO Scientific Collaboration web pages for a list of these papers, and several more will be appearing soon. Along with the strain data, the release contains detailed documentation and links to open source software tools.
O2 is the second observing run of Advanced LIGO, and the first observing run of Advanced Virgo, which joined O2 on August 1st, 2017. Data from Advanced LIGO’s first observing run (O1) are already available online, and have been used in a number of scientific publications, text books, artistic projects, and classroom activities. As with previous data releases, the O2 data set should be useful for both scientific investigations and educational activities.
Image adopted from arXiv:1811.12907 by the LIGO Scientific Collaboration and the Virgo Collaboration.
LIGO Receives New Funding to Upgrade Detectors
15 Feb 2019 -- Research grants from the NSF, along with UK and Australian funding agencies, will fund a future upgrade to the twin LIGO detectors. The $35 million upgrade---called "Advanced LIGO Plus"---will use squeezed light and new mirror coating technologies to increase the sensitivity to gravitational-waves. Advanced LIGO Plus is expected to commence operations in 2024, increasing the volume of space the observatory can survey by as much as seven times. This will lead to a higher rate of detections, improvements to tests of general relativity, and a better understanding of neutron star physics. Funding for the upgrade includes $20.4 million from the NSF, $14.1 million from UK Research and Innovation, and additional funds from the Australian Research Council.
For more information see the LIGO Lab press release, the the UKRI press release, and the NSF press release.
Image credit: Matt Heintze/Caltech/MIT/LIGO Lab
LIGO and Virgo release catalog of gravitational-wave events from first and second observing runs
3 Dec 2018 -- The LIGO Scientific Collaboration and the Virgo Collaboration have released the results of their search for stellar-mass coalescing compact binaries during the first and second observing runs using an advanced gravitational-wave detector network. This includes the confident detection of ten binary black hole mergers and one binary neutron star merger. Four of the ten black hole mergers are being reported for the first time and include the most distant and massive gravitational-wave source ever observed (GW170729).
For more information see the press release and the ligo.org detection page for the O1/O2 Catalog.
Image credit: Teresita Ramirez / Geoffrey Lovelace / SXS Collaboration / LIGO-Virgo Collaboration
Winners of 2018 Excellence in Detector Characterization and Calibration Award Are Announced
21 Nov 2018 -- The LIGO Laboratory has announced the winners of the first Award for Excellence in Detector Characterization and Calibration: Derek Davis (Syracuse University) and T.J. Massinger (Caltech). The $1000 prize will be shared by Davis and Massinger; they are invited to present colloquia at one of the LIGO Lab sites and will be recognized at the March 2019 LIGO-Virgo Collaboration Meeting. Additional details on their award can be found on the LIGO Laboratory news website.
LIGO and Virgo Collaborations Working to Make Data and Analysis Techniques Available to All
1 Nov 2018 -- Claims in a paper by Creswell et al. of puzzling correlations in LIGO data have broadened interest in understanding the publicly available LIGO data around the times of the detected gravitational-wave events. The features presented in Creswell et al. arose from misunderstandings of public data products and the ways that the LIGO data need to be treated. The LIGO Scientific Collaboration and Virgo Collaboration (LVC) have full confidence in our published results. We are preparing a paper that will provide more details about LIGO detector noise properties and the data analysis techniques used by the LVC to detect gravitational-wave signals and infer their source properties. The entire gravitational-wave signal data stream from the first observing run is already publicly available at the Gravitational-Wave Open Science Center, along with additional information on analyzing LIGO data. This resource, along with presentations from a recent Open Data Workshop, will be of interest to all who wish to understand our results in more depth.
LIGO Scientists Awarded New Horizons in Physics Prize
18 Oct 2018 -- Three LSC scientists were awarded the 2019 New Horizons in Physics prize. Rana Adhikari (Caltech), Lisa Barsotti (MIT), and Matthew Evans (MIT) were recognized “for research on present and future ground-based detectors of gravitational waves.” The New Horizons prize is awarded by the Breakthrough Prize Foundation. The LSC congratulates their colleagues on this major recognition. For more information see the Breakthrough Prize press release and the LIGO Lab news item.
"Ripples of Gravity, Flashes of Light" One Year On
16 Oct 2018 -- Exactly one year ago the LIGO Scientific Collaboration and Virgo Collaboration announced the detection of the binary neutron star merger GW170817 - the first ever cosmic event viewed in both gravitational waves and light. This remarkable discovery was made by the LIGO and Virgo detectors on 17 August 2017, and the aftermath of the merger was subsequently observed by thousands of astronomers around the world – marking an exciting new dawn for “multi-messenger” astronomy.
You can re-live the excitement of our GW170817 press conference or read more about the binary merger on our GW170817 detection page. And our latest results on the physical properties of neutron stars, from our observations of GW170817, have just been published in Physical Review Letters.
Meanwhile, preparations continue for the start of LIGO’s Third Observing Run, planned for early in 2019, with the promise of many more gravitational wave detections to come. Read more about our exciting “O3” plans.
Image credit: NSF/LIGO/Sonoma State University/A. Simonnet
LSC Congratulates our IceCube colleagues on multi-messenger breakthrough
12 Jul 2018 -- The LIGO Scientific Collaboration (LSC) congratulates members of the IceCube Collaboration on discovering the first ever evidence that links high-energy cosmic neutrinos to the nuclei of active galaxies powered by supermassive black holes. This remarkable discovery, confirmed by electromagnetic telescopes around the world, illuminates a century-old puzzle about the origins of high-energy cosmic rays and marks a major breakthrough for the emerging new field of multi-messenger astrophysics.
The LSC looks forward to the global network of gravitational-wave detectors beginning their next observing run, and the exciting prospect of detecting electromagnetic radiation, gravitational waves, and neutrinos from the most powerful astrophysical events in the cosmos.
For additional information see the associated NSF press release.
Image credit: IceCube Collaboration
Update on the start of LIGO's 3rd observing run
24 Apr 2018 -- LIGO's second observing run (O2) ended on August 25, 2017, and preparations for the third observing run (O3) began shortly thereafter. The detector installation and commissioning program between O2 and O3 has generally been proceeding well at all the LIGO and Virgo detector sites. Along with this progress we have also incurred delays in the start of full interferometer commissioning. As as result, the start of O3 is currently projected to begin in early 2019. Updates will be provided once the installation phase is complete and the commissioning phase has begun. An update on the engineering run prior to O3 will be provided by late summer 2018.
LIGO and Virgo announce black hole merger detected in June 2017
15 Nov 2017 -- The LIGO and Virgo Collaborations detected another binary black hole merger on June 8, 2017. The gravitational waves were detected by the twin LIGO detectors. With components 12 and 7 solar masses, this is the lightest binary black hole merger observed so far.
For additional information read the news release at the LIGO Lab page. See also the ligo.org detection page for GW170608.
LIGO and Virgo make first detection of gravitational waves produced by colliding neutron stars
16 Oct 2017 -- For the first time, scientists have directly detected gravitational waves — ripples in space-time — in addition to light from the spectacular collision of two neutron stars. This marks the first time that a cosmic event has been viewed in both gravitational waves and light. The discovery was made on August 17, 2017 using the U.S.-based Laser Interferometer Gravitational-Wave Observatory (LIGO); the Europe-based Virgo detector; and some 70 ground- and space- based observatories.
For more information see the press release, the ligo.org detection page for GW170817, and the LIGO Lab page for GW170817.
Image credit: Karan Jani/Georgia Tech
Media Release: Scientists to discuss new developments in gravitational-wave astronomy
11 Oct 2017 -- Scientists representing LIGO, Virgo, and some 70 observatories will reveal new details and discoveries made in the ongoing search for gravitational waves. This will take place on Monday, October 16th, at 10:00am EDT at the National Press Club in Washington, D.C. A live-stream of the press conference can be viewed at this link. An alternate link will also carry the live-stream, followed by a 30-minute YouTube question & answer session with gravitational-wave scientists.
For additional information see the full media advisory here [pdf].
The LSC congratulates Rainer Weiss, Barry Barish, and Kip Thorne on winning the 2017 Nobel Prize in Physics
3 Oct 2017 -- The LIGO Scientific Collaboration is absolutely delighted to congratulate Rainer Weiss, Barry Barish, and Kip Thorne on winning the 2017 Nobel Prize in Physics. Weiss and Thorne are two of the founders of the LIGO project. Barish was the Principal Investigator of LIGO from 1994 to 2005, during the period of its construction and initial operation.
For more information see the announcement on the Nobel Prize website, and news releases at LIGO Laboratory, Caltech, and MIT.
Image credit: LIGO/Caltech/MIT
LIGO and Virgo make the first joint detection of merging black holes
27 Sep 2017 -- The Virgo Collaboration and the LIGO Scientific Collaboration have jointly observed the merger of two black holes. This is the fourth confirmed detection of a binary black hole merger, and the first detection made using a network of three interferometers.
The detected waves—observed on August 14th, 2017 at 10:30:43 UTC (6:30AM EDT) —were produced by a pair of black holes with 31 and 25 solar masses. They merged to produce a spinning black hole of 53 solar masses. Combining the signal from Virgo with the signal observed in the two LIGO observatories improved the sky localization of the source by over a factor of 10.
For more information see the press release, the ligo.org detection page for GW170814, and the LIGO Lab page for GW170814.
Image credit: LIGO/Virgo/Caltech/MIT/Leo Singer (Milky Way image: Axel Mellinger)
A very exciting LIGO-Virgo Observing run is drawing to a close August 25
25 August 2017 -- The Virgo and LIGO Scientific Collaborations have been observing since November 30, 2016 in the second Advanced Detector Observing Run ‘O2’ , searching for gravitational-wave signals, first with the two LIGO detectors, then with both LIGO and Virgo instruments operating together since August 1, 2017. Some promising gravitational-wave candidates have been identified in data from both LIGO and Virgo during our preliminary analysis, and we have shared what we currently know with astronomical observing partners. We are working hard to assure that the candidates are valid gravitational-wave events, and it will require time to establish the level of confidence needed to bring any results to the scientific community and the greater public. We will let you know as soon we have information ready to share.
Upgraded Virgo joins LIGO during the 2nd observing run (O2)
1 August 2017 -- On August 1, 2017 the Virgo detector began taking science-quality data in concert with LIGO. While LIGO and Virgo have operated together in the past, this marks the first time they are jointly taking data after significant upgrades to both detectors. This 2nd observing run (O2) began at the end of November 2016 and will continue until August 25, 2017.
Virgo, located near Pisa, Italy, began taking engineering-mode data alongside the two LIGO detectors in mid-June. Since that time the Virgo team has been working to hunt down sources of instrument noise and improve the stable operation of the interferometer. Besides providing further confirmation of any detected events, the addition of Virgo is expected to improve their sky localization by an average factor of 2 or better. At the end of O2 both detectors will return to improving their sensitivities in preparation for the next joint observation run (O3, currently scheduled to begin in Fall 2018).
For more information see the Virgo press release.
LIGO and Virgo Collaborations preparing a brief guide to LIGO detector noise and extraction of gravitational-wave signals
Recent claims in a preprint by Creswell et al. of puzzling correlations in LIGO data have broadened interest in understanding the publicly available LIGO data around the times of the detected gravitational-wave events. We see that the features presented in Creswell et al. arose from misunderstandings of public data products. The LIGO Scientific Collaboration and Virgo Collaboration (LVC) have full confidence in our published results, and we are preparing a paper in which we will provide more details about LIGO detector noise properties and the data analysis techniques used by the LVC to detect gravitational-wave signals and infer their waveforms.
July 2017 update on LIGO's second observing run
7 July 2017 -- The second Advanced LIGO run began on November 30, 2016 and is scheduled to end on August 25, 2017. The run was suspended on May 8 for some in-vacuum commissioning activities at both sites; it resumed on May 26 at LIGO Livingston Observatory and on June 8 at LIGO Hanford Observatory. As of June 23, approximately 81 days of Hanford-Livingston coincident science data have been collected. The average reach of the LIGO network for binary merger events has been around 70 Mpc for 1.4+1.4 Msun, 300 Mpc for 10+10 Msun and 700 Mpc for 30+30 Msun mergers, with relative variations in time of the order of 10%.
As of June 23, 8 triggers, identified by online analysis using a loose false-alarm-rate threshold of one per month, have been identified and shared with astronomers who have signed memoranda of understanding with LIGO and Virgo for electromagnetic followup. One of these triggers has been confirmed by offline analysis, given the name GW170104, and published on June 1. A thorough investigation of the data and offline analysis are in progress; results will be shared when available.
Advanced Virgo has joined the network for few days in June in engineering mode, performing full tests in preparation for the triple-observing run planned for later this summer.
First triple lock of LIGO and Virgo interferometers
17 June 2017 -- For the first time, all three second generation interferometers---LIGO Hanford, LIGO Livingston, and Virgo---are simultaneously in a locked state. (When an interferometer is "locked" it means that an optical resonance is set up in the arm cavities and is producing a stable interference pattern at the photodetector.) Virgo is joining in an engineering mode, in preparation for the full triple-observing mode planned for later this summer. Congratulations, Virgo!
Image Credit: Virgo Collaboration
LIGO Detects Gravitational Waves for Third Time
1 Jun 2017 -- The LIGO Scientific Collaboration and the Virgo collaboration confirmed a third gravitational wave event in data from the Advanced LIGO detectors in Livingston, Louisiana, and Hanford, Washington, USA.
The detected waves—observed on January 4th, 2017 at 10:11:58.6 UTC (5:12AM EST) —were produced by a binary black hole system. Stellar-mass black holes with 31.2 and 19.4 solar masses merged to produce a spinning black hole of 48.7 solar masses. The detected signal is completely consistent with the predictions of general relativity.
Press release at LIGO Lab site [ pdf version].
More information can be found at the ligo.org detection page for GW170104 and the LIGO Lab page for GW170104.
Image credit: LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet)
LSC elects David Shoemaker as new spokesperson
29 March 2017 -- David Shoemaker, MIT senior research scientist, was elected spokesperson of the LIGO Scientific Collaboration. Shoemaker was the leader of the Advanced LIGO project. He succeeds outgoing spokesperson Gabriela González. More information can be found on the MIT press release.
Image Credit: Bryce Vickmark
LSC mourns the passing of LIGO co-founder Ronald Drever
9 March 2017 -- Ronald William Prest Drever, co-founder of LIGO and emeritus professor of physics at Caltech, passed away on 7 March 2017 at the age of 85. A full obituary can be found on the Caltech website, the Scotsman, and Science Magazine.
Image Credit: Caltech Archives
LIGO Leadership recognized by National Academy of Sciences and American Astronomical Society prizes; LIGO Team recognized by Royal Astronomical Society
27 January 2017 -- Present and past leaders of the LIGO Laboratory and the LIGO Scientific Collaboration were recognized with major prizes by the National Academy of Sciences and the American Astronomical Society. The entire LIGO Team was recognized by the UK Royal Astronomical Society.
On January 25th the High Energy Astrophysics Division (HEAD) of the American Astronomical Society (AAS) awarded the Bruno Rossi Prize to Gabriela González and the LIGO Scientific Collaboration (LSC). The Rossi Prize is awarded annually to recognize "a significant contribution to High Energy Astrophysics, with particular emphasis on recent, original work." González is a professor of physics and astronomy at Louisiana State University (LSU) and has been the LSC spokesperson since 2011. More information about the award can be found on the AAS website.
On January 26th the National Academy of Scienes (NAS) awarded the Henry Draper Medal to Barry Barish and Stan Whitcomb, and the NAS Award for Scientific Discovery to Gabriela González, David H. Reitze, and Peter R. Saulson.
The Henry Draper Medal is awarded every four years and honors "a recent, original investigation in astronomical physics, of importance and benefit to science to merit such recognition." Barry Barish is the Linde Professor of Physics, Emeritus at the California Institute of Technology. Barish was the Principal Investigator of LIGO from 1994 to 2005, during the period of its construction and initial operation. Stan Whitcomb is the LIGO Laboratory Chief Scientist at the California Institute of Technology. Whitcomb has been working on gravitational-wave detection since 1980; he led the team that designed and commissioned the initial LIGO detectors and helped train the team that built Advanced LIGO. More information about the award can be found on the website for the 2017 NAS Henry Draper Medal.
The NAS Award for Scientific Discovery is presented every two years for "an accomplishment or discovery in basic research, achieved within the previous five years, that is expected to have a significant impact on one or more of the following fields: astronomy, biochemistry, biophysics, chemistry, materials science, or physics." The 2017 award recognizes the first three elected spokespersons of the LIGO Scientific Collaboration: Saulson, Reitze, and González. (Rai Weiss was the first spokesperson of the LSC). Peter Saulson is the Martin A. Pomerantz ’37 Professor of Physics at Syracuse University. David Reitze is the Executive Director of LIGO Laboratory at Caltech and a Professor of Physics at the University of Florida. The award recognizes the role of the current and past spokespersons in leading the LIGO team to the first direct detections of gravitational waves in 2015. More information can be found on the webpage for the 2017 NAS Award for Scientific Discovery.
On January 13, 2017 the UK Royal Astronomical Society (RAS) awarded their 2017 Group Achievement Award in Astronomy to the LIGO Team, in recognition of the first direct detection of gravitational waves. More information can be found at the RAS news release.
LIGO to be honored at Special Breakthrough Prize Ceremony on December 4th; watch LIVE
3 December 2016 -- On Sunday, December 4th, at 10ET/9c, tune into the National Geographic channel to watch LIGO and other remarkable scientists and mathematicians receive this year’s Breakthrough Prizes. The star-studded ceremony will be hosted by Morgan Freeman, and will include a performance by Alicia Keys.
In May of this year, LIGO was named the recipient of a Special Breakthrough Prize in Fundamental Physics. This “Special” prize (separate from the 'regular' Breakthrough Prize) can be awarded at any time by the selection committee, which includes an impressive array of internationally renowned scientists. Previous winners of the Special Prize include seven leaders of the Large Hadron Collider teams that discovered the Higgs Boson. This time, the $3 million dollar prize acknowledges LIGO’s historic detection of gravitational waves and the subsequent empirical confirmation of the most difficult-to-detect predication of general relativity. The prize will be shared between LIGO founders Ronald W. P. Drever, Kip S. Thorne and Rainer Weiss, and 1012 contributors to the discovery. The Breakthrough Prize in Fundamental Physics was founded in 2012 by Yuri Milner to recognize those individuals who have made profound contributions to human knowledge.
Kip Thorne and Rai Weiss will be on hand to accept the award on behalf of the LIGO Scientific Collaboration. If you can’t tune in live this Sunday, Fox Network and NatGeo stations will re-air a one-hour version of the ceremony on Sunday, Dec. 18, at 7:00-8:00 PM ET/PTth. For more details on the Breakthrough Prize and on how to watch this event live, check out these websites:
The Ceremony: https://breakthroughprize.org/News/33
LIGO Named as Special Prize Winner: https://breakthroughprize.org/News/32
Breakthrough Prize website: https://breakthroughprize.org
LIGO Resumes Search for Gravitational Waves
30 November 2016 -- After a series of upgrades, the twin detectors of LIGO, the Laser Interferometer Gravitational-wave Observatory, have turned back on and resumed their search for ripples in the fabric of space and time known as gravitational waves. LIGO transitioned from engineering test runs to science observations at 8 a.m. Pacific Standard Time on November 30.
On February 11, 2016, the LIGO Scientific Collaboration (LSC) and the Virgo Collaboration announced that LIGO had made the first-ever direct observation of gravitational waves. The waves were generated by a tremendously powerful collision of two black holes 1.3 billion light-years away and were recorded by both of LIGO's detectors—one in Hanford, Washington, and the other in Livingston, Louisiana. A second gravitational-wave detection by LIGO was announced on June 15, 2016, also from merging black holes.
The initial detections were made during LIGO's first run after undergoing major technical upgrades in a program called Advanced LIGO. That run lasted from September 2015 to January 2016. Since then, engineers and scientists have been evaluating LIGO's performance and making improvements to its lasers, electronics, and optics—resulting in an overall increase in LIGO's sensitivity.
"For our first run, we made two confirmed detections of black-hole mergers in four months," says Caltech's Dave Reitze, executive director of the LIGO Laboratory, which operates the LIGO observatories. "With our improved sensitivity, and a longer observing period, we will likely observe even more black-hole mergers in the coming run and further enhance our knowledge of black-hole dynamics. We are only just now, thanks to LIGO, learning about how often events like these occur."
The Livingston detector now has about a 25 percent greater sensitivity—or range for detecting gravitational waves from binary black holes—than during the first observing run. That means it can see black-hole mergers at further distances than before, and therefore should see more mergers than before. The sensitivity for the Hanford detector is similar to that of the first observing run.
"The Livingston detector has improved sensitivity for lower gravitational-wave frequencies, below about 100 hertz, primarily as the result of reducing the level of scattered light, which can be a pernicious source of noise in the interferometers," says Peter Fritschel, the associate director for LIGO at MIT and LIGO's chief detector scientist. "This is important for detecting massive systems like the merger of two black holes. We are confident that we'll see more black-hole mergers."
"LIGO Hanford scientists and engineers have successfully increased the power into the interferometer, and improved the stability of the detector," says Caltech's Mike Landry, the head of LIGO Hanford Observatory. "Significant progress has been made for the future utilization of still higher power, which will ultimately lead to improved sensitivity in future runs. Furthermore, with the addition of specialized sensors called balance-beam tilt meters in the corner and end stations, the detector is now more stable against wind and low-frequency seismic motion, thereby increasing the amount of time the detector can be in observing mode."
The LIGO team will continue to improve the observatories' sensitivities over the coming years, with increases planned for each successive observing run. As more black-hole mergers are detected by LIGO, scientists will start to get their first real understanding of black-hole pairs in the universe—including their population numbers, masses, and spin rates. LIGO may also detect the merger of neutron stars—the dense cores of exploded stars. Knowledge of both black-hole and neutron-star mergers will improve our understanding of stellar evolution and death.
"LIGO's scientific and operational staff have been working hard for the past year and are enthusiastic to restart round-the-clock observations. We are as curious as the rest of the world about what nature will send our way this year," says LIGO Livingston Observatory head Joe Giaime of Caltech and Louisiana State University.
Caltech and MIT conceived of, built, and operate the LIGO Observatories, with funding provided by the National Science Foundation (NSF). The Advanced LIGO detector was constructed by Caltech and MIT with funding from NSF and contributions from LSC institutions worldwide, including the Max Planck Society in Germany, the Science and Technology Facilities Council (STFC) in the U.K., and the Australian Research Council, among many others.
LIGO research is carried out by the international LIGO Scientific Collaboration (which includes the GEO Collaboration and the Australian Consortium for Interferometric Gravitational Astronomy) and the Virgo Collaboration in Europe.
More information about LIGO and its partners can be found at www.ligo.caltech.edu and www.ligo.org.
Related links:
LIGO Visuals
LIGO Laboratory Website
LIGO Scientific Collaboration Website
GravitySpy, A Crowdsourcing Tool for Finding Glitches in LIGO Data, Is Launched
12 October 2016 -- Gravity Spy, a crowdsourcing tool for finding and analyzing glitches in LIGO data, has been publicly launched today. Glitches, or noise, in the LIGO data are a byproduct of very high sensitivity of LIGO instruments. The presence of these non-gravitational-wave disturbances in the data can obscure or mimic true gravitational-wave signals. The origin of some glitches is well-understood, while others remain a mystery. The rates at which the glitches occur vary depending on what's going on with the detectors and their environments. At their highest rates, glitches happen at 3x/sec. At such rates and with more than 2 dozen types of glitches observed so far, it takes an enourmous amount of data processing to sort out and classify them. To facilitate this process, the Gravity Spy tool is crowdsourcing the glitch identification to citizen scientists. With each new classification, LIGO will move closer and closer to discovering new gravitational-wave signals by identifying possible noise patterns in its data and filtering them out. Read more, and sign up, at the Gravity Spy website.
The Gravity Spy tool is a result of collaborative efforts of several LSC groups. The Gravity Spy team consists of LIGO researchers at the Center for Interdisciplinary Exploration and Research in Astronomy (CIERA) at Northwestern University, LIGO researchers at Caltech, machine learning researchers at Northwestern University, crowd-sourced science researchers at Syracuse University, and Zooniverse web developers.
LIGO Celebrates First Anniversary of Historic Gravitational Wave Detection
14 September 2016 -- Today LIGO celebrates the 1st anniversary of its gravitational-wave detection. Read this article about how this historic discovery was made, and about its significance for the future of gravitational-wave astronomy, at the LIGO Lab website.
Image: A. Simonnet
Advanced LIGO Engineering Team Wins OSA's 2016 Paul F. Forman Award
7 September 2016 -- The Advanced LIGO Engineering Team has been awarded the Paul F. Forman Team Engineering Excellence Award from the Optical Society. This award recognizes technical achievements such as product engineering, process, software and patent development, as well as contributions to society such as engineering education, publication and management, and furthering public appreciation of optical engineering. In addition to members of the LIGO Laboratory at all 4 locations, the team includes individuals from Albert Einstein Institute and Laser Zentrum Hannover, Glasgow University, Rutherford Appleton Laboratory, Standford University, and University of Florida. (See the full list of Advanced LIGO awardees.) The award will be presented at the Frontiers in Optics, the 100th OSA meeting that will take place in October 2016, followed by an article in Optics & Photonics News on the winners. LIGO Chief Engineer Dennis Coyne and LIGO Senior Optical Engineer GariLynn Billingsley will collect the award on behalf of the Advanced LIGO team. Congratulations to all the team members!
LSC Congratulates the LISA Pathfinder Team on the Satellite Mission Success
6 September 2016 -- The LIGO Scientific Collaboration would like to congratulate the
LISA Pathfinder team on the fantastic success of their space
satellite mission. This technology test mission has demonstrated
acceleration noise at mHz frequencies which is better than
required for the full LISA mission, and interferometric readout
noise which far better than required. The Pathfinder triumph
shows that LISA technology is sound, and paves the way towards
multi-wavelength gravitational wave astronomy, as advocated in
the recent US National Academy of Science "Review of Progress
Toward the Decadal Survey Vision in New Worlds, New Horizons in
Astronomy and Astrophysics". LISA, together with LIGO, its
partners, and future ground-based detectors, will make it
possible to "listen" to the universe over a frequency band that
is more than 30 octaves wide. We can hardly wait to discover
this unknown world!
Image: Artist's impression of the LISA Pathfinder. Credit: ESA
Gravitational Waves Detected from Second Pair of Colliding Black Holes
15 June 2016 -- The LIGO Scientific Collaboration and the Virgo collaboration identify a second gravitational wave event in the data from Advanced LIGO detectors.
On December 26, 2015 at 03:38:53 UTC, scientists observed gravitational waves — ripples in the fabric of spacetime — for the second time. The gravitational waves were detected by both of the twin Laser Interferometer Gravitational - Wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington, USA.
More about this detecton at this website and the LIGO Lab website.
LIGO Founders Are the Winners of the 2016 Kavli Prize in Astrophysics
2 June 2016 -- Three founders of LIGO are the recipients of the prestigious Kavli Prize in Astrophysics. The Kavli Foundation announced that Ronald W.P. Drever (Caltech), Kip S. Thorne (Caltech) and Rainer Weiss (MIT) are the 2016 awardees of the $1 million prize. The prize, which is awarded every 2 years, recognizes "scientists for their seminal advances in three research areas," including Astrophysics, Kavli Prize website states. The three founders of LIGO are being honored for "their ingenuity, inspiration, intellectual leadership and tenacity [which] were the driving force behind [the] epic discovery" of gravitationa waves, the prize citation reads.
Update 6 Sep 2016: The Kavli Prize was presented to (below, l-r) Ian Drever (representing his brother Ronald); Rainer Weiss; and Kip S. Thorne by Crown Prince of Norway Haakon at a ceremony in Oslo, Norway:
Credit: The Kavli Prize.
LIGO Founders Receive The Shaw Prize in Astronomy
31 May 2016 -- The three researchers who founded LIGO have been awarded the 2016 Shaw Prize in Astronomy, The Shaw Foundation announced. Ronald W.P. Drever (Caltech), Kip S. Thorne (Caltech) and Rainer Weiss (MIT) are the recipients of the $1.2 million prize, awarded annually. According to the prize citattion, the award recognizes their collective work on "conceiving and designing the Laser Interferometer Gravitational-Wave Observatory (LIGO), whose recent direct detection of gravitational waves opens a new window in astronomy, with the first remarkable discovery being the merger of a pair of stellar mass black holes."
LIGO Members Awarded The 2016 Gruber Prize in Cosmology
4 May 2016 -- The three principal founders of LIGO, along with the entire LIGO discovery team, have been awarded The 2016 Gruber Prize in Cosmolgy, the Gruber Foundation announced.
Ronald W.P. Drever (Caltech), Kip S. Thorne (Caltech), and Rainer Weiss (MIT) will each receive a gold medal and will share a $500,000 award. The Prize citation reads: "The Gruber Foundation proudly presents the 2016 Cosmology Prize to Rainer Weiss, Kip Thorne, Ronald Drever, and the entire LIGO team for pursuing a vision to observe the universe in gravitational waves, leading to a first detection that emanated from the collision of two black holes. This remarkable event provided the first glimpse into the strong‐gravity regime of Einstein's theory of general relativity that governs the dynamics of black holes, giving direct evidence for their existence, and demonstrating that their nature is consistent with the predictions of general relativity."
LIGO Awarded Special Breakthrough Prize in Fundamental Physics
2 May 2016 -- Members of the LIGO and Virgo collaborations have been awarded a Special Breakthrough Prize in Fundamental Physics, the Prize Selection Committee announced.
The award recognizes "the scientists and engineers contributing to the momentuous detection of gravitational waves", which was announced by LIGO on Feb 11, 2016, stated the announcement by the Selection Committee.
The Special Breakthrough Prize can be awarded at any time in recognition of an exceptional scientific achievement. The $3 million prize will be shared as follows: the three LIGO founders -- Ronald W.P. Drever (Caltech); Kip S. Thorne (Caltech); and Rainer Weiss (MIT) -- will share $1 million; and the 1012 contributing scientists, engineers, and staff will share $2 million.
NSF Signs a LIGO-India MOU
31 March 2016 -- The US and India have signed a Memorandum of Understanding for establishing an advanced gravitational-wave detector in India. France A. Córdova, Director of the National Science Foundation, and representatives of India's Department of Atomic Energy and Department of Science and Technology, signed the MoU in the presence of India's Prime Minister Narendra Modi. (Image: NSF/Fleming Crim.)
From the NSF website: "Today, National Science Foundation (NSF) Director France A. Córdova signed a Memorandum of Understanding (MOU) to lead the way for establishing an advanced gravitational-wave detector in India. The MOU was also signed by representatives from India's Department of Atomic Energy and India's Department of Science and Technology."
Read the NSF Press Release.
LIGO Team Testifies Before US Congress on the Discovery
24 February 2016 -- As a follow-up to the announcement of LIGO's first observation of gravitational waves, the House Committee on Science, Space, and Technology has asked LIGO Scientific Collaboration members to testify on the discovery, its meaning for science and society, and what the future may hold. LSC members to testify at the Full House Committee Hearing were the LIGO Lab Executive Director David Reitze, the LSC Spokesperson Gabriela Gonzalez, and the LIGO MIT Director David Shoemaker. Details at house.gov.
Watch the hearing below:
Opening Statement by Chairman Lamar Smith (R-Texas)
Testimony of Dr. Fleming Crim
Testimony of Dr. David Reitze
Testimony of Dr. Gabriela Gonzalez
Testimony of Dr. David Shoemaker
LIGO-India Approved
17 February 2016 -- The LIGO-India project has been formally approved by the Union Cabinet. The formal approval will clear the path for funding of the LIGO-India project, as well as for other activities that are critical for the start of building a gravitational-wave detector in India.
Read an article in The Hindu.
White House Congratulates the LIGO Team
12 February 2016 -- On February 11, President Obama tweeted his congratulations to the LIGO team:
Einstein was right! Congrats to @NSF and @LIGO on detecting gravitational waves - a huge breakthrough in how we understand the universe.
— President Obama (@POTUS) February 11, 2016
On Feb 12, 2016, John P. Holdren, Assistant to the President for Science and Technology and Director of the White House Office of Science and Technology Policy, posted a statement on the White House blog with congratulations to the LIGO team.
OSTP Dir Holdren on the groundbreaking detection of gravitational waves. Congrats to @NSF & all behind the effort! → https://t.co/KO7WBz5Qxs
— The White House OSTP (@whitehouseostp) February 12, 2016
Read the full statement on https://www.whitehouse.gov/blog.
Gravitational Waves Detected 100 Years after Einstein's General Relativity
11 February 2016 -- For the first time, scientists have observed ripples in the fabric of spacetime called gravitational waves, arriving at the earth from a cataclysmic event in the distant universe. This confirms a major prediction of Albert Einstein's 1915 general theory of relativity and opens an unprecedented new window onto the cosmos.
Gravitational waves carry information about their dramatic origins and about the nature of gravity that cannot otherwise be obtained. Physicists have concluded that the detected gravitational waves were produced during the final fraction of a second of the merger of two black holes to produce a single, more massive spinning black hole. This collision of two black holes had been predicted but never observed.
The gravitational waves were detected on September 14, 2015 at 5:51 a.m. Eastern Daylight Time (9:51 a.m. UTC) by both of the twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington, USA. The LIGO Observatories are funded by the National Science Foundation (NSF), and were conceived, built, and are operated by Caltech and MIT. The discovery, accepted for publication in the journal Physical Review Letters, was made by the LIGO Scientific Collaboration (which includes the GEO600 Collaboration and the Australian Consortium for Interferometric Gravitational Astronomy) and the Virgo Collaboration using data from the two LIGO detectors.
LSC Statement on Harassment
16 January 2016 -- There have been recent reports of harassment involving LIGO Scientific Collaboration members, specifically involving a Caltech faculty member and a student. That faculty member is no longer a member of the LSC. As a collaboration, we will not tolerate harassment and strive to provide a supportive environment for all members of our collaboration. We practice the principles enshrined in the LSC Diversity Statement, with guidelines in https://dcc.ligo.org/LIGO-M1400285/public:
"As members of the LIGO Scientific Collaboration, we recognize the importance of diversity to enrich our research and scholarship. We pledge to provide a welcoming, inclusive environment to talented individuals regardless of characteristics such as, but not limited to, physical ability, race, ethnicity, gender, sexual orientation, economic status, or personal religious practices, and to support the professional growth of all collaboration members.
We also pledge to work to increase the numbers of women and under-represented minorities that actively participate in the LSC, to pursue recruitment, mentoring, retention and promotion of women and under-represented minority scientists and engineers and to maximize their contribution to excellence in our research. As a collaboration, we will strive to create a professional climate that encourages inclusion and that respects and values diversity."